Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Alamos software key to new Swift satellite mission

17.11.2004


"Swift," a new NASA satellite, will head for the heavens Nov. 17, designed to detect gamma-ray bursts and whip around to catch them in the act. And the trigger software that makes the flying observatory smart enough to do this comes from the Space Science team at the Los Alamos National Laboratory.



Gamma-ray bursts, first discovered by Los Alamos in the course of nuclear nonproliferation data analysis, occur randomly throughout the universe. They are the most powerful explosions known to mankind, exceeded only by the Big Bang. Swift’s Burst Alert Telescope will detect and locate about two bursts a week and relay their positions to the ground in less than 15 seconds.

By studying the bursts, scientists have the opportunity to illuminate some of the earliest mysteries of the universe. "We believe Swift is capable of observing gamma-ray bursts right back through time to the very first stars that ever formed after the Big Bang," said lead Los Alamos project scientist Ed Fenimore, a Laboratory Fellow.


The main mission objectives for Swift are to determine what makes gamma-ray bursts tick, and perhaps more importantly, determine how the burst evolves and interacts with the surroundings: The burst’s afterglow is the only place in the universe where something 10 times the size of the Earth is moving 0.9999 the speed of light.

The component with which Los Alamos is most intimately involved is the Burst Alert Telescope (BAT), hardware built and developed by Goddard Space Flight Center, under the direction of Neal Gehrels. The Los Alamos role was in developing the BAT’s onboard scientific software that, as Fenimore says, "basically tells Swift when to point, and where to point."

The onboard "trigger" software scans the data from the BAT and determines when a gamma-ray burst is in progress. "Although human eyes on the ground can easily do this, doing it blindly on the satellite is quite difficult," Fenimore said. "In fact, in past gamma-ray burst experiments, it has been common that nine out of 10 triggers are false alarms. False alarms would be disastrous since Swift will actually slew itself around to try to observe the false source." Swift turns in space within 70 to 100 seconds to view the fading event.

The GRBs location information from Swift will also be broadcast to waiting robotic telescopes on the ground. Among them is the Los Alamos RAPTOR telescope, which can point anywhere within 6 seconds and capture the burst while it is still happening.

The critical second piece of the Los Alamos effort is the software to locate the gamma-ray burst so that the satellite knows exactly which direction it should orient its other telescopes. The BAT uses an imaging technique pioneered by Los Alamos called coded-aperture imaging, and most recently used by Los Alamos aboard the High Energy Transient Explorer (HETE) satellite.

In the imaging equipment aboard Swift, 54,000 pinholes in a panel of lead the size of a full sheet of plywood produce an "image," actually thousands of overlapping images (approximately 30,000 of them). The Los Alamos software must unscramble those overlapping images and make one stronger, brighter picture from which the precise location of the gamma-ray burst can be found, while eliminating known sources and statistical variations.

David Palmer, a Los Alamos astrophysicist with a special expertise in coded-aperture imaging and clever algorithms, is the key person for virtually all of the scientific software on BAT, some 30,000 lines of code. For the software to handle the required tasks takes a vast amount of computer code, with hundreds of interacting components. "It was thanks to his grasp of the whole picture in all its complexity that Palmer was able to develop this scientific package" Fenimore said, "Palmer probably did the work of 20 people on this project."

To prepare for the ongoing software work during the craft’s two-year life, Fenimore and his team have developed complex simulations at Los Alamos to recreate the BAT instrument’s likely behavior and experiences in space. The simulator allows the team to practice responding to potential issues that may require tuning of the software. The software was designed with "lots of knobs" as Fenimore phrases it, to allow the team to continuously tweak software. A special challenge for Palmer has been the relative age of the computer aboard the craft: it is a 25 MHz computer, 100 times slower than the computers most people have at home.

The Swift observatory is scheduled for launch at 12:09 p.m., EST Wednesday, Nov. 17 at, with a one-hour launch window. The satellite is aboard a Boeing Delta II rocket, launching from Cape Canaveral Air Force Station (CCAFS), Fla.

Swift is part of NASA’s medium explorer (MIDEX) program. The hardware was developed by an international team from the United States, the United Kingdom and Italy, with additional scientific involvement in France, Japan, Germany, Denmark, Spain and South Africa.

Nancy Ambrosiano | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>