Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


33-year hunt for proof of spin current now over, announced in Science


In a paper published online today in Science, a group of researchers led by David Awschalom, a professor of physics and electrical and computer engineering at the University of California, Santa Barbara, reports the observation of the spin Hall effect. This publication ends a 33-year long effort aimed at this discovery.

The Hall effect, named after American physicist Edwin Hall who discovered it in 1879, occurs when an electric current flows through a conductor in a magnetic field, creating a measurable transverse voltage. On a fundamental level, this effect originates because the magnetic field exerts a force on the moving charge carriers, which pushes them to one side of the conductor. The resulting buildup of charge at the sides of the conductor ultimately balances this magnetic field- induced force, producing a measurable voltage between opposite sides of the conductor.

In 1971, M.I. D’yakonov and V. I. Perel, two Russian physicists, predicted theoretically that a similar effect is expected in the realm of magnetization or spin physics. While the conventional Hall effect is widely used in today’s sensors and electronics, the spin Hall effect has defied experimental detection for 33 years. In analogy to its more conventional sibling, in the spin Hall effect, current-carrying electrons with opposite spins are predicted to move toward opposite sides of a semiconductor wire even without a magnetic field or magnetic materials.

This spin Hall effect results in the accumulation of spins at the edges of the sample with opposing spin polarization. In short, this phenomenon refers to the generation of a pure spin current transverse to an applied electric field: the flow of spin angular momentum with no net charge current.

Awschalom and his graduate students Yuichiro Kato and Roberto Myers, along with Art Gossard, a professor of materials and electrical and computer engineering, first discovered these signatures of the spin Hall effect in semiconductor chips made from gallium arsenide (GaAs), which is similar to those used in cell phones, and also studied the effect in samples made from indium gallium arsenide (InGaAs).

"We were initially skeptical when we first observed this in the laboratory," said Awschalom. "We kept asking ourselves why hadn’t anyone seen this earlier?" Kato agrees: "We thought it was just noise at first, but the peaks kept reproducing as the scans were repeated."

The research team constructed a Kerr microscope with 1-micrometer resolution that allowed them to clearly observe regions of electrons with opposite spins accumulated along the edges of the semiconductor chips. Because no net charge was flowing, attempts to see the spin Hall effect using electronic detectors have been problematic. Some of the experiments carried out at UCSB ran for nearly 30 continuous hours, requiring the researchers to carefully control the laboratory environment and the experimental conditions for data collection.

The potential applications of this discovery are numerous and may include sensing technologies, potential pathways towards shuttling spin information in semiconductors as well as quantum computing and quantum communication, according to Awschalom. "The most exciting aspect of this finding is that you don’t know exactly where it’s going to lead," he said. This research was funded in part by the Defense Advanced Research Projects Agency and the National Science Foundation.

At UCSB, Awschalom is director of the Center for Spintronics and Quantum Computation, and is associate scientific director of the California Nanosystems Institute.

Awschalom joined the University of California, Santa Barbara as a professor of physics in 1991. His research has been chronicled in his more than 250 scientific journal articles, and has also been featured in the New York Times, the Wall Street Journal, the San Francisco Chronicle, the Dallas Morning News, Discover magazine, Scientific American, Physics World, and New Scientist. His research focuses on optical and magnetic interactions in semiconductor quantum structures, spin dynamics and coherence in condensed matter systems, macroscopic quantum phenomena in nanometer-scale magnets, and quantum information processing in the solid state.

Awschalom’s honors include the IBM Outstanding Innovation Award, the Outstanding Investigator Prize from the Materials Research Society, the International Union of Pure and Applied Physics (IUPAP) Magnetism Prize, and the 2005 Oliver E. Buckley Prize from the American Physical Society.

Barbara Bronson Gray | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>