Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

33-year hunt for proof of spin current now over, announced in Science

12.11.2004


In a paper published online today in Science, a group of researchers led by David Awschalom, a professor of physics and electrical and computer engineering at the University of California, Santa Barbara, reports the observation of the spin Hall effect. This publication ends a 33-year long effort aimed at this discovery.

The Hall effect, named after American physicist Edwin Hall who discovered it in 1879, occurs when an electric current flows through a conductor in a magnetic field, creating a measurable transverse voltage. On a fundamental level, this effect originates because the magnetic field exerts a force on the moving charge carriers, which pushes them to one side of the conductor. The resulting buildup of charge at the sides of the conductor ultimately balances this magnetic field- induced force, producing a measurable voltage between opposite sides of the conductor.

In 1971, M.I. D’yakonov and V. I. Perel, two Russian physicists, predicted theoretically that a similar effect is expected in the realm of magnetization or spin physics. While the conventional Hall effect is widely used in today’s sensors and electronics, the spin Hall effect has defied experimental detection for 33 years. In analogy to its more conventional sibling, in the spin Hall effect, current-carrying electrons with opposite spins are predicted to move toward opposite sides of a semiconductor wire even without a magnetic field or magnetic materials.



This spin Hall effect results in the accumulation of spins at the edges of the sample with opposing spin polarization. In short, this phenomenon refers to the generation of a pure spin current transverse to an applied electric field: the flow of spin angular momentum with no net charge current.

Awschalom and his graduate students Yuichiro Kato and Roberto Myers, along with Art Gossard, a professor of materials and electrical and computer engineering, first discovered these signatures of the spin Hall effect in semiconductor chips made from gallium arsenide (GaAs), which is similar to those used in cell phones, and also studied the effect in samples made from indium gallium arsenide (InGaAs).

"We were initially skeptical when we first observed this in the laboratory," said Awschalom. "We kept asking ourselves why hadn’t anyone seen this earlier?" Kato agrees: "We thought it was just noise at first, but the peaks kept reproducing as the scans were repeated."

The research team constructed a Kerr microscope with 1-micrometer resolution that allowed them to clearly observe regions of electrons with opposite spins accumulated along the edges of the semiconductor chips. Because no net charge was flowing, attempts to see the spin Hall effect using electronic detectors have been problematic. Some of the experiments carried out at UCSB ran for nearly 30 continuous hours, requiring the researchers to carefully control the laboratory environment and the experimental conditions for data collection.

The potential applications of this discovery are numerous and may include sensing technologies, potential pathways towards shuttling spin information in semiconductors as well as quantum computing and quantum communication, according to Awschalom. "The most exciting aspect of this finding is that you don’t know exactly where it’s going to lead," he said. This research was funded in part by the Defense Advanced Research Projects Agency and the National Science Foundation.

At UCSB, Awschalom is director of the Center for Spintronics and Quantum Computation, and is associate scientific director of the California Nanosystems Institute.

Awschalom joined the University of California, Santa Barbara as a professor of physics in 1991. His research has been chronicled in his more than 250 scientific journal articles, and has also been featured in the New York Times, the Wall Street Journal, the San Francisco Chronicle, the Dallas Morning News, Discover magazine, Scientific American, Physics World, and New Scientist. His research focuses on optical and magnetic interactions in semiconductor quantum structures, spin dynamics and coherence in condensed matter systems, macroscopic quantum phenomena in nanometer-scale magnets, and quantum information processing in the solid state.

Awschalom’s honors include the IBM Outstanding Innovation Award, the Outstanding Investigator Prize from the Materials Research Society, the International Union of Pure and Applied Physics (IUPAP) Magnetism Prize, and the 2005 Oliver E. Buckley Prize from the American Physical Society.

Barbara Bronson Gray | EurekAlert!
Further information:
http://www.ucsb.edu
http://www.sciencexpress.org/

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>