Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Experiment confirms existence of new electronic state in superconductors


The existence of a new electronic state in superconductors, materials that can carry an electric current without resistance, has been confirmed experimentally according to research to be published in the 12 November 2004 issue of the journal Science by a team led by Ying Liu, associate professor of physics at Penn State. "We have established direct evidence for the existence of an odd-parity superconductor, which previously had been theorized but never demonstrated in an unambiguous experiment," says Liu. The results culminate six years of experimentation by Liu in collaboration with a former graduate student, Karl Nelson, and a former postdoctoral associate, Zhiqiang Mao at Penn State; and Yoshiteru Maeno, a professor of physics at Kyoto University.

Picture of a strontium ruthenate Sr2RuO4 SQUID used to demonstrate that strontium ruthenate is an odd-parity superconductor. A thin layer of a conventional superconductor is deposited on the front and two sides of a black Sr2RuO4 crystal. Au wires of 25 microns in diameter are attached to the SQUID for current measurements.

Crystal structure of strontium ruthenate Sr2RuO4: layers of RuO6 octahedrons separated by SrO2 layers.

In addition to their scientific interest, superconductors have a number of practical applications. These include superconducting magnets, which have enabled the development of high-resolution magnetic-resonance imaging in medicine, and superconducting wires, which transport electrical power without loss due to heating of the cable by electrical resistance.

A material becomes superconducting because electrons in the material form pairs, known as Cooper pairs. Liu likens the pairing process to dancers on a dance floor: "The electrons, crowded together, form pairs and move to the ’music’ of phase coherence, a quantummechanical property that synchronizes the steps of all the dancing pairs." These pairs, described mathematically by a quantummechanical wave function, move tightly together despite tendencies that would force them apart.

Physicists theorize that there are two categories of electronic state in superconductors, based on the quantummechanical characteristics of the Cooper pairs. Although their properties vary widely, almost all superconductors found so far belong to the same category because they share a fundamental property, known as even-parity symmetry. "Each Cooper pair in a superconductor can be thought of as being born with a little one-handed internal clock that indicates the ’time’, or the phase, of the pair," explains Liu. "When the hand points to midnight the phase of the Cooper pair is zero degrees. When the hand points to three, the phase is 90 degrees, at six it is 180 degrees. Quantum mechanics demands that the phase of two pairs moving in opposite directions be different by exactly zero or 180 degrees." If the clocks of two Cooper pairs moving in opposite directions have the same time, the symmetry of the pairs is designated as even parity.

In elemental superconductors--first discovered almost 100 years ago--the two electrons in a pair tend to be close together without any relative motion. In so-called high-temperature superconductors--materials discovered a couple of decades ago that still are poorly understood--the electrons in a pair tend to be farther apart, with substantial relative motion. Although these Cooper pairs behave very differently and the superconductors exhibit rather different features, they share the same property of even-parity symmetry.

On the other hand, if the clocks for two pairs moving in the opposite directions are six hours apart--a phase difference of 180 degrees--the symmetry of the Cooper pairs is designated as odd-parity symmetry. These odd-parity Cooper pairs form a new electronic state in superconductors. "The pairing symmetry is important because it dictates many physical properties of a superconductor. An odd-parity superconductor behaves very differently from an even-parity superconductor," says Liu. The article to appear in Science, "Odd-Parity Superconductivity in Sr2RuO4," confirms unambiguously that strontium ruthenate, Sr2RuO4, which is the only known superconducting ruthenium oxide material, is a member of this category of odd-parity superconductors.

Although other experiments have indicated that odd-parity pairing was involved, Liu’s experiment provides the first definitive proof of this new type of pairing. "Theorists had predicted that superconductivity in strontium ruthenate could be associated with odd-parity pairing," says Liu "Earlier experiments did provide plenty of evidence to support the prediction, but those results also could be questioned by counter examples and attributed to something else. Our experiment is a ’yes-or-no’ test of the odd-parity pairing that settles the issue."

The basic idea of the experiment is to measure the dependence of the phase of the Cooper-pair wave function on the direction in which the Cooper pair moves, using the phenomenon of wave interference. "Essentially, we want to compare the clocks of the strontium ruthenate Cooper pairs moving in the opposite directions. We connected a strontium ruthenate superconductor to an even-parity, conventional superconductor through two parallel surfaces that are oppositely faced, forming two so-called Josephson junctions. This procedure makes a superconducting quantum-interference device, known as a SQUID. The clocks of the strontium ruthenate pairs moving into the conventional superconductor through the two junctions are then six hours apart, or 180 degrees different in phase. The Cooper-pair waves from the two junctions will then interfere destructively," says Liu. This interference pattern was detected by measuring a current going through the SQUID as a function of an applied magnetic field. By confirming through the interference patterns that the oppositely moving Cooper pairs naturally position themselves in their respective time zones six hours apart--a 180 degree phase difference--Liu’s team demonstrated that strontium ruthenate does exhibit an odd-parity symmetry.

The discovery is of interest to physicists because it breaks new scientific ground that also could have useful applications. "In nature, particles can be paired in specific ways depending on the interactions that create the attractive force," says Liu. "Odd-parity pairing has been found to exist in unusual systems ranging from small and cold--such as atoms of helium-3 at very low temperatures, a couple of thousandths of a degree above absolute zero, to large and hot--such as neutrons in neutron stars at hundreds of millions of degrees."

The phenomenon of odd-parity superconductivity in strontium ruthenates occurs only below a temperature of about one and a half degrees above absolute zero, well below room temperature. However, Liu points out that now that the odd-parity superconductor has been shown to exist, the unique features of this type of superconductor can be studied for potential practical applications. In addition to possible expansion of current superconductor uses, odd-parity superconductors someday may be used for special purposes; for instance, in the research effort to develop quantum computers.

Barbara K. Kennedy | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>



Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

More VideoLinks >>>