Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing an ultrasensitive ’optical nose’ for chemicals

11.11.2004


A laser-based method for identifying a single atom or molecule hidden among 10 trillion others soon may find its way from the laboratory to the real world.



Developed by physicists at the National Institute of Standards and Technology (NIST), the technique is believed to be more than 1,000 times more sensitive than conventional methods. Vescent Photonics of Denver, Colo., hopes to commercialize the method as an "optical nose" for atmospheric monitoring. The portable sensors would rapidly identify chemicals in a gas sample based on the frequencies of light they absorb. Other applications eventually may include detection of chemical weapons and land mines, patient breath analysis for medical diagnosis or monitoring, and industrial detection of leaks in subterranean pipes or storage tanks, the company says.

Vescent recently signed a Cooperative Research and Development Agreement with NIST. The company will work with NIST physicist Jun Ye (co-developer of the technology) to apply the public domain "optical nose" technique to detecting and quantifying trace quantities of atmospheric gases. Ye works at JILA, a joint institute of NIST and the University of Colorado at Boulder.


The technique is a product of years of work and several innovations by NIST scientists. A gas sample is placed in an optical cavity containing two highly reflective mirrors. An infrared laser beam is directed into the cavity, where the light bounces back and forth many times. The repeated reflections increase the path length on which laser light will interact with gas molecules in the sample. In addition, the laser frequency is quickly and systematically varied in a way that enables scientists to observe and subtract background noise from the signal.

The approach allows analysis of gases that are present in minute concentrations and at very low pressures, which may enable identification of compounds such as explosives that are difficult to detect by other means.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>