Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good News For Pluto - Astronomers Say KBOs May Be Smaller Than Thought

11.11.2004


Pluto’s status as our solar system’s ninth planet may be safe if a recently discovered Kuiper Belt Object is a typical "KBO" and not just an oddball.

Astronomers have new evidence that KBOs (Kuiper Belt Objects) are smaller than previously thought.

KBOs - icy cousins to asteroids and the source of some comets - are the leftover building blocks of the outer planets. Astronomers using the world’s most powerful telescopes have discovered about 1,000 of these objects orbiting beyond Neptune since discovering the first one in 1992. These discoveries fueled debate on whether Pluto is a planet or a large (1,400-mile diameter) closer-in KBO.



Researchers estimate that the total mass of the Kuiper Belt is about a tenth of Earth’s mass. Most theorize that there are more than 10,000 KBOs with diameters greater than 100 kilometers (62 miles), compared to 200 asteroids known to be that large in the main asteroid belt between Mars and Jupiter. "People were finding all these KBOs that were huge - literally half the size of Pluto or larger," University of Arizona astronomer John Stansberry said. "But those supposed sizes were based on assumptions that KBOs have very low albedos, similar to comets."

Albedo is a measure of how much light an object reflects. The more light an object reflects, the higher its albedo. Actual data on Kuiper Belt Object albedos have been hard to come by because the objects are so distant, dim and cold. Many astronomers have assumed that KBO albedos - like comet albedos - are around four percent and have used that number to calculate KBO diameters.

However, in early results from their Spitzer Space Telescope survey of 30 Kuiper Belt Objects, Stansberry and colleagues found that a distant KBO designated 2002 AW197 reflects 18 percent of its incident light and is about 700 kilometers (435 miles) in diameter. That’s considerably smaller and more reflective than expected, Stansberry said.

"2002 AW197 is believed to be one of the largest KBOs thus far discovered," he said. "These results indicate that this object is larger than all but one main-belt asteroid (Ceres), about half the size of Pluto’s moon, Charon, and about 30 percent as large and a tenth as massive as Pluto."

Stansberry and his colleagues took the data with Spitzer’s Multiband Imaging Photometer (MIPS) on April 13, 2004. George Rieke’s team at the University of Arizona developed and built the extremely heat-sensitive MIPS. It detects heat from very cold objects by taking images at far-infrared wavelengths.

In this case, MIPS detected heat from a Kuiper Belt Object with a surface temperature of around minus 370 degrees Fahrenheit at an astonishing distance of 4.4 billion miles (7 billion kilometers), or one-and-a-half times farther away frm the sun than Pluto.

Without MIPS, astronomers operating under the assumption that 2002 AW197 reflects four percent of its incident light would calculate that it is 1500 kilometers (932 miles) in diameter, or two-thirds as large as Pluto, Stansberry said. "We’re finally starting to get data on the basic physical parameters of KBOs," Stansberry said. "That will help us determine what their compositions are, how they evolve, how massive they are, what their real size distributions and dynamics are and how Pluto fits into the whole picture," he said.

Such data will also offer insight on how comets are processed on their successive journeys around the sun, he added. "It’s not surprising that comets are darker than KBOs," Stansberry said."When something in the Kuiper Belt chips off a piece of a Kuiper Belt Object, presumably that piece would have a higher albedo on its first swing through the inner solar system. But it doesn’t take long before it loses its high albedo surface and builds up a lot of very dark materials, at least in its outermost surface."

Others with Stansberry in this Spitzer study are Dale Cruikshank and Josh Emery of NASA Ames Research Center, Yan Fernandez of the University of Hawaii, George Rieke of the University of Arizona and Michael Werner of NASA’s Jet Propulsion Laboratory. Stansberry said the team will finish collecting their KBO data with Spitzer soon. "We’ll know a lot more about how big and bright these things are by this time next year," he said.

Stansberry is presenting the research today at the 86th annual meeting of the American Astronomical Society Division of Planetary Science in Louisville, Ky. More information about this and other new results from the Spitzer Space Telescope is on the Web at http://www.spitzer.caltech.edu/Media/index.shtml The Spitzer Space Telescope is managed for NASA by the Jet Propulsion Laboratory in Pasadena, Calif.

Lori Stiles | UA News Services
Further information:
http://www.arizona.edu
http://www.spitzer.caltech.edu/Media/index.shtml
http://mips.as.arizona.edu/mipspage

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>