Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keck zooms in on the weird weather of Uranus

10.11.2004


Capitalizing on the incomparable optical capabilities of the Keck Telescope, scientists have gained an unprecedented look at the atmosphere of Uranus, providing new insight into some of the most enigmatic weather in the solar system.



A pair of images unveiled here today (Nov. 10) at a meeting of the Division for Planetary Sciences of the American Astronomical Society, reveal more cloud features -- an abundance of atmospheric phenomena that vary dramatically in size, brightness and longevity -- than have been observed before on Uranus. "The cloud features range from small to large, from dim and diffuse to sharp and bright, from rapidly-evolving systems to stable features that last for years," says Lawrence Sromovsky, a senior scientist at the University of Wisconsin-Madison’s Space Science and Engineering Center.

What’s more, the new Keck images captured several Uranian weather oddities, including a big southern hemisphere storm feature that, over the course of several years, seesaws over 5 degrees of latitude. "It’s weird behavior that hasn’t been recognized before on Uranus. It’s similar to what’s been seen on Neptune, although there the oscillation is much more rapid," Sromovsky explains. "It is not surprising to see cloud features drifting in latitude, but our models don’t show these oscillations. We don’t know what makes it keep coming back to its starting point."


Another unusual Uranian weather feature is a long, narrow complex of cloud features that is probably the largest group of atmospheric features ever seen on the planet. Spotted in the northern hemisphere of Uranus, the 18,000-mile-long complex of clouds dissipated completely over the span of a month. "These more dynamic systems seem to develop at northern latitudes where they rise to even higher latitudes, apparently using up energy and dissipating relatively rapidly," says Sromovsky, who conducted the new Keck observations with Patrick Fry, also of UW-Madison’s Space Science and Engineering Center.

Together, the new images of Uranus reveal more than 30 cloud features, exceeding the total observed in all pictures obtained by the Voyager probe, the Hubble Space Telescope and other telescopes up to the year 2000.

The scientific value of the new pictures lie in their ability to help scientists unravel some of the atmospheric novelties of Uranus, the seventh planet from the sun. The cloud features they show, for example, are being used to trace and help define wind patterns and predict the motions of the large storm systems that sweep across the pale blue planet. "The large, longer-lived cloud features of Uranus may be underpinned by giant hurricane-like vortices, as we’ve seen on Neptune," says Sromovsky, "but it’s unlikely that they are as violent as the hurricanes that routinely batter Florida, for example."

Earthly hurricanes, he explains, dispense a lot of energy. Uranus, which is 19 times as far from the sun as the Earth, has far less solar energy to dissipate. Uranian storms seem to survive and thrive because the atmosphere is "slippery," providing less of the atmospheric resistance that help storms on Earth dispense their energy. "There is very little temperature contrast and very little energy to drive the weather in Uranus," says Sromovsky. "Whatever is happening has to be well lubricated; it has to be a low-friction environment."

The quality of the new images, says Sromovsky, demonstrates the astonishing optical capabilities of one of the world’s premier ground-based telescopes: "The image quality is better than anything we’ve seen before. It is amazing that the amount of detail we can see from the ground with Keck far exceeds what we could see with Voyager during its relatively close pass by the planet. And we can get better resolution than Hubble, especially at the near infrared wavelengths we use to improve cloud contrast."

Situated at the summit of Hawaii’s dormant Mauna Kea volcano, the Keck Telescope boasts a 10-meter diameter segmented mirror, and a revolutionary adaptive optics system that detects and corrects most of the atmospheric effects that blur viewing.

Lawrence Sromovsky | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>