Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keck zooms in on the weird weather of Uranus

10.11.2004


Capitalizing on the incomparable optical capabilities of the Keck Telescope, scientists have gained an unprecedented look at the atmosphere of Uranus, providing new insight into some of the most enigmatic weather in the solar system.



A pair of images unveiled here today (Nov. 10) at a meeting of the Division for Planetary Sciences of the American Astronomical Society, reveal more cloud features -- an abundance of atmospheric phenomena that vary dramatically in size, brightness and longevity -- than have been observed before on Uranus. "The cloud features range from small to large, from dim and diffuse to sharp and bright, from rapidly-evolving systems to stable features that last for years," says Lawrence Sromovsky, a senior scientist at the University of Wisconsin-Madison’s Space Science and Engineering Center.

What’s more, the new Keck images captured several Uranian weather oddities, including a big southern hemisphere storm feature that, over the course of several years, seesaws over 5 degrees of latitude. "It’s weird behavior that hasn’t been recognized before on Uranus. It’s similar to what’s been seen on Neptune, although there the oscillation is much more rapid," Sromovsky explains. "It is not surprising to see cloud features drifting in latitude, but our models don’t show these oscillations. We don’t know what makes it keep coming back to its starting point."


Another unusual Uranian weather feature is a long, narrow complex of cloud features that is probably the largest group of atmospheric features ever seen on the planet. Spotted in the northern hemisphere of Uranus, the 18,000-mile-long complex of clouds dissipated completely over the span of a month. "These more dynamic systems seem to develop at northern latitudes where they rise to even higher latitudes, apparently using up energy and dissipating relatively rapidly," says Sromovsky, who conducted the new Keck observations with Patrick Fry, also of UW-Madison’s Space Science and Engineering Center.

Together, the new images of Uranus reveal more than 30 cloud features, exceeding the total observed in all pictures obtained by the Voyager probe, the Hubble Space Telescope and other telescopes up to the year 2000.

The scientific value of the new pictures lie in their ability to help scientists unravel some of the atmospheric novelties of Uranus, the seventh planet from the sun. The cloud features they show, for example, are being used to trace and help define wind patterns and predict the motions of the large storm systems that sweep across the pale blue planet. "The large, longer-lived cloud features of Uranus may be underpinned by giant hurricane-like vortices, as we’ve seen on Neptune," says Sromovsky, "but it’s unlikely that they are as violent as the hurricanes that routinely batter Florida, for example."

Earthly hurricanes, he explains, dispense a lot of energy. Uranus, which is 19 times as far from the sun as the Earth, has far less solar energy to dissipate. Uranian storms seem to survive and thrive because the atmosphere is "slippery," providing less of the atmospheric resistance that help storms on Earth dispense their energy. "There is very little temperature contrast and very little energy to drive the weather in Uranus," says Sromovsky. "Whatever is happening has to be well lubricated; it has to be a low-friction environment."

The quality of the new images, says Sromovsky, demonstrates the astonishing optical capabilities of one of the world’s premier ground-based telescopes: "The image quality is better than anything we’ve seen before. It is amazing that the amount of detail we can see from the ground with Keck far exceeds what we could see with Voyager during its relatively close pass by the planet. And we can get better resolution than Hubble, especially at the near infrared wavelengths we use to improve cloud contrast."

Situated at the summit of Hawaii’s dormant Mauna Kea volcano, the Keck Telescope boasts a 10-meter diameter segmented mirror, and a revolutionary adaptive optics system that detects and corrects most of the atmospheric effects that blur viewing.

Lawrence Sromovsky | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>