Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keck zooms in on the weird weather of Uranus

10.11.2004


Capitalizing on the incomparable optical capabilities of the Keck Telescope, scientists have gained an unprecedented look at the atmosphere of Uranus, providing new insight into some of the most enigmatic weather in the solar system.



A pair of images unveiled here today (Nov. 10) at a meeting of the Division for Planetary Sciences of the American Astronomical Society, reveal more cloud features -- an abundance of atmospheric phenomena that vary dramatically in size, brightness and longevity -- than have been observed before on Uranus. "The cloud features range from small to large, from dim and diffuse to sharp and bright, from rapidly-evolving systems to stable features that last for years," says Lawrence Sromovsky, a senior scientist at the University of Wisconsin-Madison’s Space Science and Engineering Center.

What’s more, the new Keck images captured several Uranian weather oddities, including a big southern hemisphere storm feature that, over the course of several years, seesaws over 5 degrees of latitude. "It’s weird behavior that hasn’t been recognized before on Uranus. It’s similar to what’s been seen on Neptune, although there the oscillation is much more rapid," Sromovsky explains. "It is not surprising to see cloud features drifting in latitude, but our models don’t show these oscillations. We don’t know what makes it keep coming back to its starting point."


Another unusual Uranian weather feature is a long, narrow complex of cloud features that is probably the largest group of atmospheric features ever seen on the planet. Spotted in the northern hemisphere of Uranus, the 18,000-mile-long complex of clouds dissipated completely over the span of a month. "These more dynamic systems seem to develop at northern latitudes where they rise to even higher latitudes, apparently using up energy and dissipating relatively rapidly," says Sromovsky, who conducted the new Keck observations with Patrick Fry, also of UW-Madison’s Space Science and Engineering Center.

Together, the new images of Uranus reveal more than 30 cloud features, exceeding the total observed in all pictures obtained by the Voyager probe, the Hubble Space Telescope and other telescopes up to the year 2000.

The scientific value of the new pictures lie in their ability to help scientists unravel some of the atmospheric novelties of Uranus, the seventh planet from the sun. The cloud features they show, for example, are being used to trace and help define wind patterns and predict the motions of the large storm systems that sweep across the pale blue planet. "The large, longer-lived cloud features of Uranus may be underpinned by giant hurricane-like vortices, as we’ve seen on Neptune," says Sromovsky, "but it’s unlikely that they are as violent as the hurricanes that routinely batter Florida, for example."

Earthly hurricanes, he explains, dispense a lot of energy. Uranus, which is 19 times as far from the sun as the Earth, has far less solar energy to dissipate. Uranian storms seem to survive and thrive because the atmosphere is "slippery," providing less of the atmospheric resistance that help storms on Earth dispense their energy. "There is very little temperature contrast and very little energy to drive the weather in Uranus," says Sromovsky. "Whatever is happening has to be well lubricated; it has to be a low-friction environment."

The quality of the new images, says Sromovsky, demonstrates the astonishing optical capabilities of one of the world’s premier ground-based telescopes: "The image quality is better than anything we’ve seen before. It is amazing that the amount of detail we can see from the ground with Keck far exceeds what we could see with Voyager during its relatively close pass by the planet. And we can get better resolution than Hubble, especially at the near infrared wavelengths we use to improve cloud contrast."

Situated at the summit of Hawaii’s dormant Mauna Kea volcano, the Keck Telescope boasts a 10-meter diameter segmented mirror, and a revolutionary adaptive optics system that detects and corrects most of the atmospheric effects that blur viewing.

Lawrence Sromovsky | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>