Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dance of crystal structures

10.11.2004


The word “crystal” is a technical term; iron and steel, for example, are crystals whereas glass is not. In fact, "crystal" means materials of a crystalline structure.



Just like any other kind of material, crystals can change their structure. For example, if the temperature rises sufficiently, it passes from a solid to a liquid state. But other, not so noticeable, structural changes also take place, such as those that occur in the solid state, itself. These changes are known as solid-to-solid phase transitions and are induced by changes in either temperature or pressure. Moreover, the electrical and magnetic properties of the crystals are affected during these transitions and are, thereby, of great interest for technology.

At the Leioa (Bizkaia) campus of the University of the Basque Country (EHU), a research team has been analysing solid-to-solid transitions of crystals. They selected a group of crystals known as double perovskites for this purpose. Prior to the analysis a certain amount of preparation work is required in the lab: the perovskites have to be synthesised.


Synthesis of crystals in the laboratory

The synthesis of crystals in the laboratory is not a simple process. First, the component powders of the crystal have to be mixed and compacted and then they have to be stabilised in the kiln. For example, to mention one method of synthesis, in order to obtain the Sr2NiWO6 perovskite, SrCO3, NiO and WO3 powders have to be blended. The result of the blend will also be a powder - perovskite powder.

But the resulting perovskite is not always the desired one and this is why it is necessary to characterise the compound obtained once it has been synthesised. That is, in this example, it has to be confirmed that it is, in fact Sr2NiWO6 perovskite and not another one, or, at least the same perovskite but with a few impurities.

Finally, once the desired perovskite has been obtained, various techniques are applied: X-ray diffraction, neutron diffraction, synchrotron radiation, Raman spectroscopy, etc. With all these, information about the crystal structure is obtained - location of the elements, their vibration frequency and a number of other properties. In order to carry this out, moreover, researchers have to travel to France and the United States, given that, in the University of the Basque Country, there is no synchotron; neither can Raman spectroscopy be carried out.

Solid structure is adaptable

So, the solid structure of the crystal is adaptable. But how? For example, when pressure increases, the structure of the crystal compacts so crystal atoms are nearer to each other. This may produce an increase in the vibration frequency of these atoms. At some point, the stability of the structure will break and change the location of components, thus, a solid-to-solid phase transition will have taken place.

Must be remenbered that these transitions are often accompanied by changes in the electrical and magnetic properties of the crystals: for example, the conductivity of the crystal can change when it reaches a certain temperature. The work at Leioa is targeting those values of temperature and pressure accompanied by transitions in the perovskites.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>