Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dance of crystal structures

10.11.2004


The word “crystal” is a technical term; iron and steel, for example, are crystals whereas glass is not. In fact, "crystal" means materials of a crystalline structure.



Just like any other kind of material, crystals can change their structure. For example, if the temperature rises sufficiently, it passes from a solid to a liquid state. But other, not so noticeable, structural changes also take place, such as those that occur in the solid state, itself. These changes are known as solid-to-solid phase transitions and are induced by changes in either temperature or pressure. Moreover, the electrical and magnetic properties of the crystals are affected during these transitions and are, thereby, of great interest for technology.

At the Leioa (Bizkaia) campus of the University of the Basque Country (EHU), a research team has been analysing solid-to-solid transitions of crystals. They selected a group of crystals known as double perovskites for this purpose. Prior to the analysis a certain amount of preparation work is required in the lab: the perovskites have to be synthesised.


Synthesis of crystals in the laboratory

The synthesis of crystals in the laboratory is not a simple process. First, the component powders of the crystal have to be mixed and compacted and then they have to be stabilised in the kiln. For example, to mention one method of synthesis, in order to obtain the Sr2NiWO6 perovskite, SrCO3, NiO and WO3 powders have to be blended. The result of the blend will also be a powder - perovskite powder.

But the resulting perovskite is not always the desired one and this is why it is necessary to characterise the compound obtained once it has been synthesised. That is, in this example, it has to be confirmed that it is, in fact Sr2NiWO6 perovskite and not another one, or, at least the same perovskite but with a few impurities.

Finally, once the desired perovskite has been obtained, various techniques are applied: X-ray diffraction, neutron diffraction, synchrotron radiation, Raman spectroscopy, etc. With all these, information about the crystal structure is obtained - location of the elements, their vibration frequency and a number of other properties. In order to carry this out, moreover, researchers have to travel to France and the United States, given that, in the University of the Basque Country, there is no synchotron; neither can Raman spectroscopy be carried out.

Solid structure is adaptable

So, the solid structure of the crystal is adaptable. But how? For example, when pressure increases, the structure of the crystal compacts so crystal atoms are nearer to each other. This may produce an increase in the vibration frequency of these atoms. At some point, the stability of the structure will break and change the location of components, thus, a solid-to-solid phase transition will have taken place.

Must be remenbered that these transitions are often accompanied by changes in the electrical and magnetic properties of the crystals: for example, the conductivity of the crystal can change when it reaches a certain temperature. The work at Leioa is targeting those values of temperature and pressure accompanied by transitions in the perovskites.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>