Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switching one light beam with another, Cornell provides a key component for photonic chips

28.10.2004


Cornell University researchers have demonstrated for the first time a device that allows one low-powered beam of light to switch another on and off on silicon, a key component for future "photonic" microchips in which light replaces electrons.



Photonics on silicon has been suggested since the 1970s, and previous light-beam switching devices on silicon have been demonstrated, but they were excessively large (by microchip standards) or have required that the beam of light that does the switching be very high-powered. The approach developed by Michal Lipson, Cornell assistant professor of electrical and computer engineering, confines the beam to be switched in a circular resonator, greatly reducing the space required and allowing a very small change in refractive index to shift the material from transparent to opaque.

The advancement of nanoscale fabrication techniques in just the past few years has made it possible to overcome some of the traditional limitations of silicon photonics, Lipson said. Photonic circuits will find their first application in routing devices for fiber-optic communications, she suggests. At present, information that travels at the speed of light through optical fiber must be converted at the end into electrical signals that are processed on conventional electronic chips, then in many cases converted back into optical signals for retransmission, an extremely slow process. The all-optical switch makes it possible to route these signals without conversion.


The all-optical switch is described in the Oct. 28 issue of the journal Nature by Lipson and members of the Cornell Nanophotonics Research Group, which she directs. The researchers used the facilities of the Cornell NanoScale Facility to manufacture the devices on silicon chips. "It is highly desirable to use silicon -- the dominant material in the microelectronic industry -- as the platform for these photonic chips," they said in their paper. The group already has developed other components for silicon photonic chips, including straight and curved waveguides. One of the key components needed, however, is a way for one optical signal to switch another on or off.

Lipson’s optical switch is based on a ring resonator, a device already familiar to photonics researchers. When a ring-shaped waveguide is placed tangent to a straight one, photons traveling along the straight waveguide are diverted into the ring and travel around it many times, but only if they match the resonant frequency of the ring, which is determined by its circumference. For the reported experiments, the researchers created a ring 10 micrometers in diameter with a resonance wavelength of 1,555.5 nanometers, in the near infrared.

To turn the switch off, they pumped a second beam of light in the same wavelength range through the system. This light is absorbed by the silicon through a process known as two-photon absorption, creating many free electrons and "holes" (positively charged regions) in the material. This changes the refractive index and shifts the resonant frequency of the ring far enough that it will no longer resonate with the 1,555.5-nanometer signal. The process can theoretically take place in a few tens of picoseconds, the researchers said. A similar effect can be used in a straight waveguide, but it requires a fairly long distance. Because light travels many times around the ring, the scattering effect is enhanced and the signal can be controlled in a very small space.

For routing applications, Lipson said, a ring resonator coupled to two waveguides could be used. The second waveguide would receive a signal only when the resonator is switched on. She noted that there is very little loss of light in the ring, meaning that light coming into a routing device could be "recycled" and sent on its way with no additional amplification needed. Ring resonators also could be used as tunable filters, the researchers suggest, for example to separate the many wavelengths of light in multiplexed optical fiber communications systems.

The Nature paper is titled "All-optical switch on silicon: Controlling light with light on chip." Co-authors are Vilson Almeida, a former Cornell graduate student now in the Institute for Advanced Studies in the Technical Center of the Brazilian Air Force ; Carlos Barrios, former Cornell postdoctoral researcher and now a scientist in the Nanophotonics Technology Centre , Universidad Politénica de Valencia, Spain; and Roberto Panepucci, former Cornell research associate now an assistant professor at Florida International University.

Previous work on nanoscale optical waveguides and photonic coupling is described in a paper, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," published in the Institute of Physics journal Nanotechnology , Aug. 2, 2004.

Bill Steele | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>