Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titan’s First Close-Up

27.10.2004


Cassini-Huygens, the joint NASA/ESA/ASI space mission has successfully made a close encounter with Saturn’s moon, Titan. This was confirmed in the early hours of this morning as the first information and pictures were beamed back via NASA’s Deep Space Network tracking station in Madrid, Spain. As anticipated, the spacecraft came within 1,200 kilometres (750 miles) of Titan’s surface.

At the time, Cassini was about 1.3 billion kilometres (826 million miles) from Earth. Numerous images, perhaps as many as 500, were taken by the visible light camera and were being transmitted back to Earth. It takes 1 hour and 14 minutes for the images to travel from the spacecraft to Earth. The downlink of data will continue through the night into the early morning hours. Cassini project engineers will continue to keep a close watch on a rainstorm in Spain, which may interrupt the flow of data from the spacecraft.

Professor Carl Murray from Queen Mary, University of London, a member of the Cassini Imaging Science Subsystem team, has been taking a look at the first images, "Titan’s veil has been lifted yet again and we have been treated to a spectacular array of images from this bizarre moon. The return of this data from such a peculiar and distant world is another remarkable success for Cassini. When the images are combined with data from the other instruments on Cassini we will have a much more complete understanding of what the Huygens probe can expect when it lands in January."



The flyby was by far the closest any spacecraft has ever come to Titan, the largest moon of Saturn, perpetually drenched in a thick blanket of smog. Titan is a prime target of the Cassini-Huygens mission because it is the only moon in our solar system with an atmosphere. It is a cosmic time capsule that offers a look back in time to see what Earth might have been like before the appearance of life.

Mark Leese, is a member of the Huygens team at the Open University, who are involved in the Science Surface Package (SSP) and the Huygens Atmospheric Instrument (HASI). “The Open University Huygens team are looking forward to what these images and other data may tell us about the surface of Titan, in anticipation of the Huygens mission on January 14th 2005. Then we hope that the UK built Surface Science Package will send back the first measurements from the surface of Titan.”

He adds, “The combination of images, spectrometer measurements and RADAR data from this close flyby should help to prepare us for the mission ahead. In addition, Cassini’s measurements of the atmosphere should confirm that the Titan atmosphere model used to design the probe entry system is correct.”

The Huygens probe, built and operated by the European Space Agency, is attached to Cassini; its release is planned on Christmas Day. It will descend through Titan’s opaque atmosphere on January 14, 2005, to collect data and touch down on the surface.

UK scientists are playing significant roles in the Cassini Huygens mission with involvement in 6 of the 12 instruments onboard the Cassini orbiter and 2 of the 6 instruments on the Huygens probe. The UK has the lead role in the magnetometer instrument on Cassini (Imperial College) and the Surface Science Package on Huygens (Open University).

Gill Ormrod | alfa
Further information:
http://saturn.jpl.nasa.gov/news/events/titana/index.cfm
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>