Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists transfer information between matter and light; advancing quantum communications

22.10.2004


Converting quantum bits



Alex Kuzmich and Dzmitry Matsukevich have transferred atomic state information from two clouds of rubidium atoms to a single photon.



A team of physicists at the Georgia Institute of Technology has taken a significant step toward the development of quantum communications systems by successfully transferring quantum information from two different groups of atoms onto a single photon.

The work, to be published in the October 22 issue of the journal Science, represents a "building block" that could lead to development of large-scale quantum networks. Sponsored by the Research Corporation and NASA, the work is believed to be the first to demonstrate transfer of quantum information from matter to light.


The researchers, Assistant Professor Alex Kuzmich and graduate student Dzmitry Matsukevich – both from Georgia Tech’s School of Physics – report transferring atomic state information from two different clouds of rubidium atoms to a single photon. In the photon, information about the spatial states of the atom clouds was represented as vertical or horizontal optical polarization.

"A really big issue in quantum information systems today is distributed quantum networks, and for that, you have to be able to convert quantum bits of information based on matter into photons," Kuzmich said. "This is the first step, one building block. What we have done is create a quantum network node, and now the next step is to create a second quantum network node and connect them."

Qubits, or quantum bits, are very different from the bits in conventional computing. Unlike conventional bits that exist in either a 0 or 1 state, qubits can simultaneously exist in both states. Qubits can also interact with other qubits, their properties "entangled" in ways unique to quantum systems. These odd properties mean quantum computers could provide dramatic advantages over conventional systems in certain types of computation that are difficult for conventional computers.

The approach taken by Kuzmich and Matsukevich begins with two clouds of rubidium atoms, each cloud with a different state, forming a matter qubit. By passing a split beam of light separately through each cloud (also known as an ensemble) and then recombining it, they were able to create a qubit that was entangled with a single photon.

Other research teams have been working to map states from a single atom onto a photon. Kuzmich says using the atomic cloud of very cold atoms as a matter qubit offers a simplicity advantage in creating the entanglement. "The state of the qubit is the collective state of the atomic ensemble," he explained. "Conversion from matter to light becomes efficient in one direction because emission from all the atoms add together to create a preferred forward direction, similar to how radio frequency antennas are able to emit directionally."

Using optically thick atomic ensembles for the interface between matter and light in long-distance quantum communication was proposed in 2001 by a team of researchers (Duan, Lukin, Cirac and Zoller) from the University of Innsbruck in Austria. The Georgia Tech researchers built on that work, which has become known as the DLCZ protocol.

Transferring a coherent quantum state from a matter-based qubit to a photonic qubit involves three main steps:

  • An entangled state between a single photon (signal) and a single collective excitation distributed over many atoms in two distinct optically thick atomic samples is generated;
  • Measurement of the signal photon maps the atomic ensembles into a desired state, conditioned on the choice of the basis and the outcome of the measurement. This atomic state is nearly a maximally entangled state between two distinct atomic ensembles;
  • This atomic state is then converted into a single photon (idler) emitted into a well-defined mode.

Conversion of quantum states from atomic-based systems to photonic systems is necessary for long-distance communication. While the matter-based systems can provide long-term storage of information, efficient transfer of information requires that it be converted into a photonic state for transmission across optical fiber networks.

Once converted into a photonic qubit, the information can be processed and may not need to be converted back to a matter-based qubit. "If you want to realize a quantum repeater, you must have two such quantum nodes," Kuzmich explained. "But in this quantum communications approach, you don’t ever need to convert the photon back to atomic format."

For their research, the Georgia Tech physicists used light at a wavelength of 780 nanometers. For transmission in conventional optical fiber networks, however, they will have to switch to the 1550 nanometer wavelength that has become standard in the telecommunications industry. The Science paper reported on atom clouds containing approximately a billion rubidium atoms. Kuzmich says having 10 billion atoms compressed into the same space would boost efficiency. "We should be able to increase our efficiency by a factor of ten at least," he said. Practical applications are still at least 7-10 years away, Kuzmich estimates.

Detailed Explanation of Experiment Diagram: A magneto-optical trap is used to provide an optically thick atomic cloud of a billion rubidium atoms for the experiment. The classical coherent laser pulses used in the generation and verification procedures define the two distinct pencil-shape components of the atomic ensemble that form the memory qubit, L and R.

An infrared write pulse (780 nm wavelength) is split into two beams by a polarizing beam splitter (PBS1) focused into two regions of the atomic cloud about 1 mm apart and passed through it. The light induces spontaneous Raman scattering of a signal photon with slightly shorter wavelength. The classical light is dumped away by the PBS2, while the quantum signal photon is transmitted by the dichroic mirror DM, passed through an arbitrary polarization state transformer R and a polarizer PBS5, and is directed onto a single-photon detector D1. Detection of the signal photon by D1 prepares the atomic ensemble in any desired state and thereby concludes the preparation of the quantum memory qubit.

Following memory state preparation, the read-out stage is performed. After a user-programmable delay a classical coherent read pulse of 795 nm wavelength illuminates the two atomic ensembles. This results in a single (i.e., quantum) idler photon being emitted in the forward direction. This accomplishes a transfer of the memory state onto the idler. The idler is reflected off the dichroic mirror DM. After passing through the state transformer R and PBS6, the two polarization components are directed onto single-photon detectors (D2, D3) thus accomplishing measurement of the idler photon, and hence the memory qubit, in a controllable arbitrary basis.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>