Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists transfer information between matter and light; advancing quantum communications

22.10.2004


Converting quantum bits



Alex Kuzmich and Dzmitry Matsukevich have transferred atomic state information from two clouds of rubidium atoms to a single photon.



A team of physicists at the Georgia Institute of Technology has taken a significant step toward the development of quantum communications systems by successfully transferring quantum information from two different groups of atoms onto a single photon.

The work, to be published in the October 22 issue of the journal Science, represents a "building block" that could lead to development of large-scale quantum networks. Sponsored by the Research Corporation and NASA, the work is believed to be the first to demonstrate transfer of quantum information from matter to light.


The researchers, Assistant Professor Alex Kuzmich and graduate student Dzmitry Matsukevich – both from Georgia Tech’s School of Physics – report transferring atomic state information from two different clouds of rubidium atoms to a single photon. In the photon, information about the spatial states of the atom clouds was represented as vertical or horizontal optical polarization.

"A really big issue in quantum information systems today is distributed quantum networks, and for that, you have to be able to convert quantum bits of information based on matter into photons," Kuzmich said. "This is the first step, one building block. What we have done is create a quantum network node, and now the next step is to create a second quantum network node and connect them."

Qubits, or quantum bits, are very different from the bits in conventional computing. Unlike conventional bits that exist in either a 0 or 1 state, qubits can simultaneously exist in both states. Qubits can also interact with other qubits, their properties "entangled" in ways unique to quantum systems. These odd properties mean quantum computers could provide dramatic advantages over conventional systems in certain types of computation that are difficult for conventional computers.

The approach taken by Kuzmich and Matsukevich begins with two clouds of rubidium atoms, each cloud with a different state, forming a matter qubit. By passing a split beam of light separately through each cloud (also known as an ensemble) and then recombining it, they were able to create a qubit that was entangled with a single photon.

Other research teams have been working to map states from a single atom onto a photon. Kuzmich says using the atomic cloud of very cold atoms as a matter qubit offers a simplicity advantage in creating the entanglement. "The state of the qubit is the collective state of the atomic ensemble," he explained. "Conversion from matter to light becomes efficient in one direction because emission from all the atoms add together to create a preferred forward direction, similar to how radio frequency antennas are able to emit directionally."

Using optically thick atomic ensembles for the interface between matter and light in long-distance quantum communication was proposed in 2001 by a team of researchers (Duan, Lukin, Cirac and Zoller) from the University of Innsbruck in Austria. The Georgia Tech researchers built on that work, which has become known as the DLCZ protocol.

Transferring a coherent quantum state from a matter-based qubit to a photonic qubit involves three main steps:

  • An entangled state between a single photon (signal) and a single collective excitation distributed over many atoms in two distinct optically thick atomic samples is generated;
  • Measurement of the signal photon maps the atomic ensembles into a desired state, conditioned on the choice of the basis and the outcome of the measurement. This atomic state is nearly a maximally entangled state between two distinct atomic ensembles;
  • This atomic state is then converted into a single photon (idler) emitted into a well-defined mode.

Conversion of quantum states from atomic-based systems to photonic systems is necessary for long-distance communication. While the matter-based systems can provide long-term storage of information, efficient transfer of information requires that it be converted into a photonic state for transmission across optical fiber networks.

Once converted into a photonic qubit, the information can be processed and may not need to be converted back to a matter-based qubit. "If you want to realize a quantum repeater, you must have two such quantum nodes," Kuzmich explained. "But in this quantum communications approach, you don’t ever need to convert the photon back to atomic format."

For their research, the Georgia Tech physicists used light at a wavelength of 780 nanometers. For transmission in conventional optical fiber networks, however, they will have to switch to the 1550 nanometer wavelength that has become standard in the telecommunications industry. The Science paper reported on atom clouds containing approximately a billion rubidium atoms. Kuzmich says having 10 billion atoms compressed into the same space would boost efficiency. "We should be able to increase our efficiency by a factor of ten at least," he said. Practical applications are still at least 7-10 years away, Kuzmich estimates.

Detailed Explanation of Experiment Diagram: A magneto-optical trap is used to provide an optically thick atomic cloud of a billion rubidium atoms for the experiment. The classical coherent laser pulses used in the generation and verification procedures define the two distinct pencil-shape components of the atomic ensemble that form the memory qubit, L and R.

An infrared write pulse (780 nm wavelength) is split into two beams by a polarizing beam splitter (PBS1) focused into two regions of the atomic cloud about 1 mm apart and passed through it. The light induces spontaneous Raman scattering of a signal photon with slightly shorter wavelength. The classical light is dumped away by the PBS2, while the quantum signal photon is transmitted by the dichroic mirror DM, passed through an arbitrary polarization state transformer R and a polarizer PBS5, and is directed onto a single-photon detector D1. Detection of the signal photon by D1 prepares the atomic ensemble in any desired state and thereby concludes the preparation of the quantum memory qubit.

Following memory state preparation, the read-out stage is performed. After a user-programmable delay a classical coherent read pulse of 795 nm wavelength illuminates the two atomic ensembles. This results in a single (i.e., quantum) idler photon being emitted in the forward direction. This accomplishes a transfer of the memory state onto the idler. The idler is reflected off the dichroic mirror DM. After passing through the state transformer R and PBS6, the two polarization components are directed onto single-photon detectors (D2, D3) thus accomplishing measurement of the idler photon, and hence the memory qubit, in a controllable arbitrary basis.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>