Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini-Huygens prepares for closest approach to Titan

22.10.2004


UK scientists and industrialists involved in the NASA, ESA, ASI Cassini-Huygens space mission are eagerly awaiting the data to be received when the spacecraft makes its closest fly-by of Saturn’s largest moon, Titan, on 26th October.



At the time of the closest approach, which is scheduled to be at 5.44 pm BST (9.44 am PDT), the spacecraft will travel a mere 1200km (745 miles) above the surface of the moon at a speed of 6.1 km per second. Confirmation that the flyby has been successful and that all the data have been received will not take place until 2.30 a.m BST, 27th Oct (6.30 pm PDT 26thOct).

This close flyby will be looking at all aspects of Titan, which although it is the second largest moon in the solar system, after Jupiter’s Ganymede, we know relatively little about. The instruments on board Cassini will be looking at the moon’s interior structure, surface characteristics, atmospheric properties and interactions with Saturn’s magnetosphere.


Furthermore the studies will provide important information for ESA’s Huygens team, who will be using the data gathered to verify the atmospheric models developed for the separation and descent and landing of the Huygens probe on 25th December and 14th January respectively.

Further data from the imaging and radar instrumentation onboard Cassini should provide an indication of whether the likely landing surface for the Huygens probe will be solid or liquid material. The first images are expected at 2.30 am BST on 27th (6.30 pm PDT on 26th) and will be posted on http://saturn.jpl.nasa.gov/home/index.cfm

Professor John Zarnecki from the Open University who is lead scientist for the Science Surface Package on the Huygens Probe, is eagerly awaiting the results. “This first close-up look at Titan should enable us to find out just how precisely our atmospheric models fit with the real situation and of course we are excited about the prospect of discovering just what type of surface the Huygens probe will land on early next year. In other words we want to know if our instruments will land with a splash or a thud!”

Professor Michele Dougherty, from Imperial College, lead scientist for the Magnetometer instrument on Cassini added, “Titan’s atmosphere is similar to the very early atmosphere of the Earth and by studying its properties we can start to unravel some of the mysteries of the planet. The Cassini Magnetometer experiment will investigate Titan’s interior and variations in the magnetic field measurements could indicate the presence of an ocean contaminated by salty materials like in the Earth’s oceans and in the hypothesised oceans of Callisto and Europa in the Jovian System.”

UK scientists are playing significant roles in the Cassini Huygens mission with involvement in 6 of the 12 instruments onboard the Cassini orbiter and 2 of the 6 instruments on the Huygens probe. The UK has the lead role in the magnetometer instrument on Cassini (Imperial College) and the Surface Science Package on Huygens (Open University).

UK industry had developed many of the key systems for the Huygens probe, including the flight software (LogicaCMG) and parachutes (Martin Baker). These mission critical systems need to perform reliably in some of the most challenging and remote environments ever attempted by a man made object. For examples, the Huygens probe will hit the atmosphere of Titan at 6 km/sec. LogicaCMG’s software onboard the probe will be responsible for deploying the parachutes, separating the front and back shield with precise timings to achieve the required descent profile; reducing the velocity of Huygens before commencing the science experiments, and managing communications back to Cassini.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>