Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cassini-Huygens prepares for closest approach to Titan


UK scientists and industrialists involved in the NASA, ESA, ASI Cassini-Huygens space mission are eagerly awaiting the data to be received when the spacecraft makes its closest fly-by of Saturn’s largest moon, Titan, on 26th October.

At the time of the closest approach, which is scheduled to be at 5.44 pm BST (9.44 am PDT), the spacecraft will travel a mere 1200km (745 miles) above the surface of the moon at a speed of 6.1 km per second. Confirmation that the flyby has been successful and that all the data have been received will not take place until 2.30 a.m BST, 27th Oct (6.30 pm PDT 26thOct).

This close flyby will be looking at all aspects of Titan, which although it is the second largest moon in the solar system, after Jupiter’s Ganymede, we know relatively little about. The instruments on board Cassini will be looking at the moon’s interior structure, surface characteristics, atmospheric properties and interactions with Saturn’s magnetosphere.

Furthermore the studies will provide important information for ESA’s Huygens team, who will be using the data gathered to verify the atmospheric models developed for the separation and descent and landing of the Huygens probe on 25th December and 14th January respectively.

Further data from the imaging and radar instrumentation onboard Cassini should provide an indication of whether the likely landing surface for the Huygens probe will be solid or liquid material. The first images are expected at 2.30 am BST on 27th (6.30 pm PDT on 26th) and will be posted on

Professor John Zarnecki from the Open University who is lead scientist for the Science Surface Package on the Huygens Probe, is eagerly awaiting the results. “This first close-up look at Titan should enable us to find out just how precisely our atmospheric models fit with the real situation and of course we are excited about the prospect of discovering just what type of surface the Huygens probe will land on early next year. In other words we want to know if our instruments will land with a splash or a thud!”

Professor Michele Dougherty, from Imperial College, lead scientist for the Magnetometer instrument on Cassini added, “Titan’s atmosphere is similar to the very early atmosphere of the Earth and by studying its properties we can start to unravel some of the mysteries of the planet. The Cassini Magnetometer experiment will investigate Titan’s interior and variations in the magnetic field measurements could indicate the presence of an ocean contaminated by salty materials like in the Earth’s oceans and in the hypothesised oceans of Callisto and Europa in the Jovian System.”

UK scientists are playing significant roles in the Cassini Huygens mission with involvement in 6 of the 12 instruments onboard the Cassini orbiter and 2 of the 6 instruments on the Huygens probe. The UK has the lead role in the magnetometer instrument on Cassini (Imperial College) and the Surface Science Package on Huygens (Open University).

UK industry had developed many of the key systems for the Huygens probe, including the flight software (LogicaCMG) and parachutes (Martin Baker). These mission critical systems need to perform reliably in some of the most challenging and remote environments ever attempted by a man made object. For examples, the Huygens probe will hit the atmosphere of Titan at 6 km/sec. LogicaCMG’s software onboard the probe will be responsible for deploying the parachutes, separating the front and back shield with precise timings to achieve the required descent profile; reducing the velocity of Huygens before commencing the science experiments, and managing communications back to Cassini.

Gill Ormrod | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>