Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers guide light through liquids and gases on a chip

19.10.2004


A major step forward for optical sensing technology



Researchers at the University of California, Santa Cruz, have reported the first demonstration of integrated optical waveguides with liquid cores, a technology that enables light propagation through small volumes of liquids on a chip. The new technology has a wide range of potential applications, including chemical and biological sensors with single-molecule sensitivity. "It is an enabling technology that opens up a wide range of fields to the use of optics on integrated semiconductors to do experiments or build devices," said Holger Schmidt, an assistant professor of electrical engineering at UC Santa Cruz.

Schmidt and graduate student Dongliang Yin designed the liquid-core waveguides so they could be made using the standard silicon fabrication technology used on an industrial scale to make computer chips. The fabrication process yields a hollow-core waveguide that works whether the core is filled with liquid or gas. They described the novel waveguides and the results of optical testing of the devices in the October 18 issue of the journal Applied Physics Letters.


Guiding light waves through liquids and gases is a challenge because of their relatively low refractive indexes. In an optical fiber, light travels through a core with a high index of refraction surrounded by cladding with a lower index of refraction. The difference in refractive indexes results in "total internal reflection" of light waves, allowing transmission of optical signals over long distances.

To build a waveguide with a liquid or gas core, Schmidt relied on the principle of antiresonant reflecting optical waveguides (ARROW). ARROW waveguides with solid cores have been used for semiconductor lasers and other applications. The technique uses multiple layers of materials of precise thicknesses as cladding to reflect light back into the core. Schmidt’s group has achieved low-loss propagation of light over useful distances in hollow-core ARROW waveguides containing air or liquids. "Liquids and gases are the natural environment for molecules in biology and chemistry. If you can guide light through water and air, all of the fields that rely on nonsolid materials can take advantage of integrated optics technology," Schmidt said.

Schmidt is working toward chemical sensing of single molecules using liquid-core waveguides. He also sees potential applications for gas-core waveguides in the areas of atomic physics and quantum optics.

As cladding materials for the hollow-core waveguides, the researchers chose silicon nitride and silicon dioxide because of their compatibility with microfabrication techniques and the potential for integration with silicon-based electronics. The cladding layers are deposited over a sacrificial layer that is later etched away to create the hollow core, which has a rectangular shape. With a thickness of 3.5 microns and a width of 9 microns, it is the smallest hollow light guide ever made. The fabrication was done at a facility at Brigham Young University by John Barber and Aaron Hawkins of BYU, both coauthors on the paper.

"We can make many waveguides in parallel on a chip, so you can imagine probing 20 to 30 channels at one time, with each channel containing a different sample," Schmidt said. "And because it is all silicon technology, we can integrate it with electrical contacts and even put a silicon photodetector right on the chip."

Schmidt’s team has also made two-dimensional arrays of waveguides that connect with each other at 90 degree angles, another useful feature made possible by silicon microfabrication techniques.

The researchers have been able to detect molecular fluorescence from a liquid sample in the core of the waveguide, using light from a helium-neon laser to stimulate a fluorescent dye. The experiment detected fluorescence from 800 molecules of dye in a sample volume of 200 picoliters (a picoliter is one trillionth of a liter). Further refinements should enable detection of single molecules, Schmidt said.

Fiberoptic connections can channel light into the waveguides, which could also be coupled with microfluidics systems--so-called "labs on a chip"--to control the flow of samples into and out of the waveguide cores.

Schmidt is also working with David Deamer, professor and chair of biomolecular engineering at UCSC, to combine liquid-core waveguides with a nanopore device developed in Deamer’s lab. Deamer’s nanopore device can feed linear molecules such as single-stranded DNA through a 2.5-nanometer channel one at a time.

"The idea is to use the nanopore to feed single molecules one by one into a very small volume in the core of the waveguide and capture the photons released by each molecule. There is really nothing like this--it’s a totally novel approach to single-molecule detection," said Deamer, who is also a coauthor on the new paper.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>