Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Liverpool Telescope catches first gamma ray burst


On Wednesday 6 October 2004 a team of UK astronomers from Liverpool John Moores University and the University of Hertfordshire used the world’s largest robotic optical telescope, the Liverpool Telescope, to detect the optical light, or afterglow, from a Gamma Ray Burst (GRB).

"Gamma ray bursts are the most energetic explosions in the Universe and it is very exciting to have detected a Gamma Ray Burst afterglow for the first time with the Liverpool Telescope and then to watch it fade,” said Dr Carole Mundell, JMU’s Astrophysics Research Institute.

GRBs represent the most important astrophysical object since the discovery of quasars and pulsars. Since the first optical afterglow of a GRB was only discovered in 1997, there are many unanswered questions about their nature remaining.

The Liverpool Telescope is a 2m optical and infrared telescope that stands 2400m above sea level on a mountain top on the Canary Island of La Palma. It took its first images of the sky last year and is specially designed to respond very rapidly to notification of cosmic explosions by X-ray and gamma-ray satellites such as NASA’s HETE-II and soon-to-be-launched Swift.

Dr Nial Tanvir, University of Hertfordshire said: "We expect the Liverpool Telescope to make a vital contribution to our understanding of the origin and physics of Gamma Ray Bursts due to its unique combination of size and rapid robotic response."

Gamma ray bursts are the most luminous transient objects in the Universe and are thought to be caused when a massive star in a distant galaxy reaches the end of its life, collapsing to form a black hole and, in the process, ejecting a jet of material at ultra-high velocities. The so-called optical afterglow is thought to originate from light emitted when this material crashes into the gas surrounding the star.

In the first few minutes after the initial burst of gamma rays the optical and infrared light carries the clue to the origin of these catastrophic explosions but has been difficult to capture with traditional telescopes.

Mundell continued: "The Liverpool Telescope is specially designed to catch this early light and probe the physics of these objects at the earliest possible times."

JMU’s new images show the sensitivity of the Liverpool telescope and demonstrate the relative ease by which it is able to detect even faint afterglows, a unique feature compared to other robotic telescopes.

This robotic capability enabled JMU’s astrophysicists to take a number of images, in 4 different colour bands, over a period of about 4-6 hours. When combined with brightness measurements made by other international telescopes, JMU’s measurements will be important in constraining the colour evolution of the afterglow, the break point in the light curve and hence the energetics of the explosion.

Shonagh Wilkie | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>