Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Liverpool Telescope catches first gamma ray burst

15.10.2004


On Wednesday 6 October 2004 a team of UK astronomers from Liverpool John Moores University and the University of Hertfordshire used the world’s largest robotic optical telescope, the Liverpool Telescope, to detect the optical light, or afterglow, from a Gamma Ray Burst (GRB).



"Gamma ray bursts are the most energetic explosions in the Universe and it is very exciting to have detected a Gamma Ray Burst afterglow for the first time with the Liverpool Telescope and then to watch it fade,” said Dr Carole Mundell, JMU’s Astrophysics Research Institute.

GRBs represent the most important astrophysical object since the discovery of quasars and pulsars. Since the first optical afterglow of a GRB was only discovered in 1997, there are many unanswered questions about their nature remaining.


The Liverpool Telescope is a 2m optical and infrared telescope that stands 2400m above sea level on a mountain top on the Canary Island of La Palma. It took its first images of the sky last year and is specially designed to respond very rapidly to notification of cosmic explosions by X-ray and gamma-ray satellites such as NASA’s HETE-II and soon-to-be-launched Swift.

Dr Nial Tanvir, University of Hertfordshire said: "We expect the Liverpool Telescope to make a vital contribution to our understanding of the origin and physics of Gamma Ray Bursts due to its unique combination of size and rapid robotic response."

Gamma ray bursts are the most luminous transient objects in the Universe and are thought to be caused when a massive star in a distant galaxy reaches the end of its life, collapsing to form a black hole and, in the process, ejecting a jet of material at ultra-high velocities. The so-called optical afterglow is thought to originate from light emitted when this material crashes into the gas surrounding the star.

In the first few minutes after the initial burst of gamma rays the optical and infrared light carries the clue to the origin of these catastrophic explosions but has been difficult to capture with traditional telescopes.

Mundell continued: "The Liverpool Telescope is specially designed to catch this early light and probe the physics of these objects at the earliest possible times."

JMU’s new images show the sensitivity of the Liverpool telescope and demonstrate the relative ease by which it is able to detect even faint afterglows, a unique feature compared to other robotic telescopes.

This robotic capability enabled JMU’s astrophysicists to take a number of images, in 4 different colour bands, over a period of about 4-6 hours. When combined with brightness measurements made by other international telescopes, JMU’s measurements will be important in constraining the colour evolution of the afterglow, the break point in the light curve and hence the energetics of the explosion.

Shonagh Wilkie | alfa
Further information:
http://telescope.livjm.ac.uk/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>