Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Liverpool Telescope catches first gamma ray burst

15.10.2004


On Wednesday 6 October 2004 a team of UK astronomers from Liverpool John Moores University and the University of Hertfordshire used the world’s largest robotic optical telescope, the Liverpool Telescope, to detect the optical light, or afterglow, from a Gamma Ray Burst (GRB).



"Gamma ray bursts are the most energetic explosions in the Universe and it is very exciting to have detected a Gamma Ray Burst afterglow for the first time with the Liverpool Telescope and then to watch it fade,” said Dr Carole Mundell, JMU’s Astrophysics Research Institute.

GRBs represent the most important astrophysical object since the discovery of quasars and pulsars. Since the first optical afterglow of a GRB was only discovered in 1997, there are many unanswered questions about their nature remaining.


The Liverpool Telescope is a 2m optical and infrared telescope that stands 2400m above sea level on a mountain top on the Canary Island of La Palma. It took its first images of the sky last year and is specially designed to respond very rapidly to notification of cosmic explosions by X-ray and gamma-ray satellites such as NASA’s HETE-II and soon-to-be-launched Swift.

Dr Nial Tanvir, University of Hertfordshire said: "We expect the Liverpool Telescope to make a vital contribution to our understanding of the origin and physics of Gamma Ray Bursts due to its unique combination of size and rapid robotic response."

Gamma ray bursts are the most luminous transient objects in the Universe and are thought to be caused when a massive star in a distant galaxy reaches the end of its life, collapsing to form a black hole and, in the process, ejecting a jet of material at ultra-high velocities. The so-called optical afterglow is thought to originate from light emitted when this material crashes into the gas surrounding the star.

In the first few minutes after the initial burst of gamma rays the optical and infrared light carries the clue to the origin of these catastrophic explosions but has been difficult to capture with traditional telescopes.

Mundell continued: "The Liverpool Telescope is specially designed to catch this early light and probe the physics of these objects at the earliest possible times."

JMU’s new images show the sensitivity of the Liverpool telescope and demonstrate the relative ease by which it is able to detect even faint afterglows, a unique feature compared to other robotic telescopes.

This robotic capability enabled JMU’s astrophysicists to take a number of images, in 4 different colour bands, over a period of about 4-6 hours. When combined with brightness measurements made by other international telescopes, JMU’s measurements will be important in constraining the colour evolution of the afterglow, the break point in the light curve and hence the energetics of the explosion.

Shonagh Wilkie | alfa
Further information:
http://telescope.livjm.ac.uk/

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>