Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue professor puts new spin on quantum computer technology

14.10.2004


Purdue University physicists have built a critical component for the development of quantum computers and spintronic devices, potentially bringing advances in cryptography and high-speed database searches a step closer.


atomic force micrograph



A team of researchers including Leonid P. Rokhinson has created a device that can effectively split a stream of quantum objects such as electrons into two streams according to the spin of each, herding those with "up" spin in one direction and corralling those that spin "down" in another. By producing such "spin-polarized" streams, the tiny device could become a key component in quantum computers, which have not yet left the drawing boards of the computer industry but are highly sought-after for their purported facility at cracking codes and searching large databases.

"For the first time, we have achieved spatial spin separation of the ’holes’ in gallium arsenide, the spaces that electrons leave behind as they travel through this semiconductor," said Rokhinson, who is an assistant professor of physics in Purdue’s School of Science. "These holes also have spin characteristics, just as particles do, and separating them according to their spin has been a great challenge. Producing this effect will be critical for the success of any spin-based electronic device, and this separation method could be one of the missing links necessary for the development of quantum computers and non-volatile memory devices." The research appears in the current issue of the journal Physics Review Letters.


Quantum computers, though still in the early stages of development, are highly desired because of their projected ability to solve particular kinds of difficult problems that often arise in cryptography and database searching. These problems often have a very large number of candidate solutions, most of which are incorrect and must be quickly eliminated from the solution pool.

Even the fastest conventional computers, which must test each potential solution before moving on to another, can take an inordinately long time to winnow out the incorrect candidates. But a quantum computer could theoretically test the solutions simultaneously – a process computer scientists refer to as parallel processing. Rokhinson said this is because of a peculiar quantum physical property of particles called entanglement. "Two electrons – one that has ’up’ spin, the other with ’down’ – can be entangled so that anything that affects one affects the other," he said. "The particles remain entangled even if they are separated by great distances."

The two particles’ respective spins, which are opposite but inextricably linked, allow them to form a ’quantum bit,’ or qubit, that can actually be ’on’ and ’off’ simultaneously, or function as both a one and a zero during digital calculations. This ability to represent two conditions at once, multiplied many times over within a computer chip that uses a large number of qubits, could be a powerful tool for sifting through information.

"The trouble is, you have to find a way to measure the final quantum state of the qubit after the calculations have been made to extract useful information from them," Rokhinson said. "Only once you have separated them can you obtain the answer to your calculations. This measurement issue has been one of the big challenges of the field."

Some of the reason behind this difficulty lies in the very weak coupling of spin with the environment. In semiconductor materials, Rokhinson said, spin is coupled many trillions of times less than charge is, and spin experiences comparatively little influence from nearby matter.

"In practical terms, this means you can try to make a particle flip its spin from ’up’ to ’down,’ but it won’t feel you pushing," he said. "Researchers have tried to polarize the particles using everything from light waves to strong magnetic fields, but nothing was working well enough to separate them."

However, Rokhinson’s team discovered that semiconductors made of highly purified gallium arsenide sandwiched between layers of aluminum gallium arsenide possessed a natural property that, when harnessed, could push the quantum spaces, or ’holes,’ into two different directions according to their spin state.

"Although it may seem counterintuitive, the holes have a spin state as well," Rokhinson said. "The spaces don’t literally spin – the idea of spin is just a loose metaphor anyway, to help physicists imagine what’s going on. In an electric current flowing through a copper wire, we imagine electrons jumping from one copper atom’s orbital hole to another. We could also imagine those holes having a positive charge and flowing in the opposite direction. A similar concept is at work here with spin state – we’re just working with the holes this time, not the particles."

It is a natural property of the holes within the semiconductor that Rokhinson’s group has harnessed to divide them up, which could make life simpler for the chip designers who may someday put this hole-herder to use. "The large magnetic fields needed for other methods of spin measurement are not necessary in this device," Rokhinson said. "However, it requires very low temperatures, a fraction of a degree above absolute zero. We will probably need to reproduce the effect at higher temperatures for chips based on this technology to become commercially worthwhile."

But with further development, Rokhinson said, the device might form a key element in a quantum microprocessor. "All spin-based processors require devices that can inject, detect and manipulate particles," he said. "This device can both inject and detect them, and since we already have some knowledge about manipulating particles, it could mean that a major hurdle in the way of developing spintronics devices has been overcome."

Rokhinson said his team would be concentrating on creating a device that also could manipulate the electron holes as well, thus accomplishing all three necessary tasks with a single component. "That would allow us to create a spin-based transistor," he said. "Because semiconductor transistors have had such a dramatic impact on the last few decades of computer development, we are optimistic that this discovery could be significant for the industry."

This research is supported in part by the Defense Advanced Research Projects Agency and the National Science Foundation.

Rokhinson is affiliated with Purdue’s Birck Nanotechnology Center. The center anchors Purdue’s new Discovery Park, located on the southwestern edge of campus. Programs include undergraduate teaching, graduate research and technology transfer initiatives with industry partners.

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>