Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Los Alamos instrument yields new knowledge of Saturn’s rings


University of California scientists working at Los Alamos National Laboratory have begun to analyze data from an instrument aboard the joint U.S.-European spacecraft Cassini. Although Cassini has only been orbiting the planet Saturn since July 1, data from the Cassini Plasma Spectrometer (CAPS) has already begun to provide new information about the curious nature of Saturn’s space environment.

CAPS had been detecting advance readings for several days before Cassini finally crossed the bow shock that exists in the solar wind ahead of the magnetosphere, a huge magnetic field bubble produced in the solar wind by Saturn’s strong magnetic field. On June 28, the spacecraft entered into the magnetosphere itself and began taking data. From this very preliminary set of measurements, it is apparent that the outer reaches of Saturn’s magnetosphere are probably populated by plasma captured from the solar wind, but closer to the planet the plasma comes primarily from the rings and/or the inner icy satellites.

According to Michelle Thomsen, the current Los Alamos CAPS project leader, "After many years of design, development and testing, and then the seven-year journey across the solar system, CAPS is finally doing the job it was built to do. We are quickly learning much, but I think we have only begun to understand what CAPS can teach us about Saturn and its space environment over the next few years."

CAPS consists of three separate analyzers designed to measure the electrically charged particles trapped within Saturn’s magnetosphere. Los Alamos played a major role in the design and construction of two of them: an ion mass spectrometer (IMS), which incorporates a novel design developed at Los Alamos to identify the different atomic species in Saturn’s magnetospheric plasma, and an ion beam spectrometer (IBS), which is based on a design used by Los Alamos scientists on several previous solar wind research missions.

During Cassini’s first brief pass over Saturn’s rings, CAPS identified a previously unknown low-energy plasma trapped on the magnetic field lines threading the Cassini Division, the name given to the gap between the main A and B rings. With the four-year mission just beginning, including more than 70 orbits of the planet, CAPS is poised to provide scientists with a new level of understanding about Saturn’s space environment, as well as clues about some of the space physics processes that operate more universally in the solar system.

The CAPS team involves scientists and engineers from 14 institutions and six countries, including Dave Young, the Principal CAPS Investigator at the Southwest Research Institute in San Antonio, Texas. At Los Alamos, the CAPS effort was made possible by the work of numerous members of International, Space and Response Division and its predecessor organizations. The IMS was designed by Los Alamos staff member Beth Nordholt and former staff member Dave McComas. In addition to Thomsen, current members of the team include Bruce Barraclough (lead investigator for the IBS), Dot Delapp, Jack Gosling, Dan Reisenfeld, John Steinberg, Bob Tokar and summer student Brian Fish.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Todd Hanson | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>