Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next step to the quantum computer

07.10.2004


Physicists at the University of Bonn build quantum data memory

Physicists from the University of Bonn have succeeded in taking a decisive step forward towards processing quantum information with neutral atoms: in the latest issue of the ’Physical Review Letters’ vol. 93 (2004) they describe how they managed to set up a quantum register experimentally. Their next aim is to construct a quantum gate in which two or more atoms interact with each other in a controlled way. By combining the register and gate there would then be all the basic components available for developing a quantum computer with neutral atoms.

Registers are the central memory of a computer. They consist of a series of elementary information cells which can each take one bit of information, i.e. a logical zero or one. In a register of eight bits’ length, for example, a number between 0 and 255 can be stored – the 255 corresponds to a series of eight bits with the state of 1. In order to add two numbers three registers are normally required: two for the two addends and one more for the result.



’For our registers we use neutral atoms,’ Dominik Schrader of the Bonn Institute of Applied Physics adds. An atom is a microscopic quantum system and can therefore store quantum information. In analogy with the ’bit’ this is thus known as a ’qubit’. In addition to the classic information states of zero and one, qubits can also take up an arbitrary number of intermediate states, what are known as quantum mechanical superposition states.

Dominik Schrader has built the register together with Dr. Arno Rauschenbeutel in Professor Dieter Meschede’s team. In their experiment the physicists first decelerated caesium atoms so that they were scarcely moving. Five of these ’cool’ atoms were then loaded onto a laser beam, a stationary light wave consisting of many peaks and troughs – roughly comparable to a piece of corrugated cardboard. The atoms were ’trapped’ inside the troughs and remained stationary, which the team was able to check with a highly sensitive digital camera.

With the aid of an additional laser the researchers then initialised the quantum register, i.e. they ’wrote’ zeros on all the qubits. ’We were then able to store the quantum information desired in each qubit by using microwave radiation,’ Dominik Schrader explains. So as to be able to manipulate the qubits individually and selectively, the physicists generated a localised magnetic field. ’Depending on the local strength of the magnetic field, the qubits only react to microwave radiation of a very specific frequency. By varying the microwave radiation we were thus able to write the qubits desired.’ The resolution of this addressing technique is about two thousandths of a millimetre – over a length of one millimetre, therefore, several hundred qubits could be stored.

In order to check whether the register really had stored the information desired, the researchers bombarded the chain of atoms with laser light which only interacts with qubits in status 0. The laser photons shot these 0 atoms off the carrier beam, but left the 1 atoms unaffected. On the camera image only the atoms with a state of 1 were subsequently visible.

In their next step the physicists will now attempt to set up a quantum gate, in which two or more qubits of the register interact with each other in a controlled way. ’We hope to get there in two years,’ Dominik Schrader says. ’Mind you, in a field like this you repeatedly come across difficulties which you would not previously have anticipated.’ He is thus cagey in making a prediction about when a ’quantum computer’ worthy of the name will begin to operate. However, it would probably have abilities which would make traditional computers look pretty puny – e.g. when factorising large numbers, where today’s computers soon come up against their limitations.

Dominik Schrader | EurekAlert!
Further information:
http://www.uni-bonn.de

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>