Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK pupils scan the skies for hazardous asteroids

06.10.2004


Tracking newly discovered asteroids and comets to identify their orbits is the work of a small number of observatories. Yet UK students, using the Faulkes Telescope North - a remotely operated research quality telescope dedicated for educational use - will now be swelling these ranks. The students have taken such accurate data of a number of asteroids that the telescope has been awarded an observatory code and can now submit official data to the international body that monitors asteroids and comets, the International Astronomical Union’s (IAU’s) Minor Planet Centre.


M16 is a beautiful star cluster still surrounded by its embryonic gas and dust cloud. New stars are still forming in this region which lies 7,000 light years away, seen in the constellation Serpens.



The students, at King’s School in Canterbury, have been aided by their teacher Dr Andrew Taylor and Dr Lothar Kurtze, from Technische Universität in Darmstadt. Over the period of a month, several asteroids were observed to demonstrate the high quality of the images and the telescope’s ability to accurately track asteroids, an area of research called astrometry.

Dr Andrew Taylor says, “It’s great to be working alongside professional astronomers, and using the Faulkes Telescope North is extremely simple over the internet. The students are thrilled to be making a valuable contribution in this important area of research.”


In achieving the IAU code, users of the Faulkes Telescope North can now follow in the steps of Star Trek Voyager’s Seven of Nine, head of the Astrometrics Lab. She uses astrometry to plot courses for the starship to avoid hazardous areas and enemies! By using the Faulkes Telescope Project students can help provide astrometric information about the orbits of potentially hazardous asteroids and comets.

Most asteroids are discovered by a limited number of search projects which are then observed by amateur astronomers using fairly small telescopes. All new discoveries must have ‘follow-up’ observations made in order to determine accurately the asteroid’s orbit around the Sun. The follow-up observations are vital and using the new observatory code this can now be carried out by UK schools. The Faulkes Telescope Project and the Spaceguard Centre have jointly developed a programme where asteroids can be tracked, including those objects which are too small and faint to be seen with small telescopes.

Jay Tate, Director of the Spaceguard Centre says, “This is a tremendous achievement for the Faulkes Telescope Project and the students and teachers that have carried out the work. The UK can now, for the first time, make a very significant contribution to the global asteroid tracking network, and it will be schools around the country that will be doing real, cutting edge work that equals that done by professionals!”

Anyone using the Faulkes Telescope North can search for new asteroids or make follow-up observations of recent discoveries and can now get them officially recognised. This presents excellent opportunities for not only schools but also the amateur astronomy community who otherwise may not be able to access such state-of-the-art telescopes.

Currently there are only six working observatories in the UK which have this honour and none of the telescopes can compete with the size and capability of the Faulkes Telescope on the Hawaiian island of Maui which is fully robotic and has a 2m diameter primary mirror.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>