Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A mysterious change in the wave properties of electrons

30.09.2004


The electrons of a perfect metallic surface move like free waves in a plane. Nevertheless, if atomic barriers are inserted, this may restrict their movement in one dimension, forming stationary waves such as those on the water surface in a bucket.



The stationary or free behaviour of electron waves is, nevertheless, still something very intriguing, given that the barriers of atoms are very close to each other, there is no confinement, and that the electron recovers its free movement, exactly as was discovered some years ago by the Nanophysics Laboratory research team led by Enrique Ortega at the Donostia-San Sebastian campus of the University of the Basque Country.

The prestigious magazine Physical Review Letters, the most important in the world in the field of Physics, has just published the results of new research this team has been undertaking since 1999 on the wave properties of electrons: the critical size of the step is 2 nanometres, i.e., if the distance of the barriers is superior to 2 nanometres, the electrons form stationary waves; if it is inferior, the waves are free.


More specifically, Enrique Ortega has formed a new nanostructure, i.e. a typical nanometre-sized structure (a nanometre being a thousand millionth or a billionth of a metre) by depositing small quantities of silver on a copper surface. The system arranges itself by forming a network of nanostrips of silver and copper. The copper strips show atomic steps with a step width that depends on the amount of silver deposited. On varying the width, one can observe in detail the transformation of the stationary waves confined between the steps of atomic height in waves of electrons that move freely.

In this way the critical size of the step of 2 nanometres has been discovered: less than this width free waves exist and widths greater than this critical figure are confined. “The detailed study of this transition will be fundamental in the future when establishing the wave properties of electrons in metallic nanostructures", stated Enrique Ortega.

According to Doctor Ortega, the most difficult part of the investigation was constructing the system by which the measurement was to be carried out. These kinds of trials have to be undertaken in ultra high vacuum systems, where not even the smallest particle can be present, as the least amount of contamination will destroy the system. They are also systems difficult to extract information from. Moreover, it is necessary to create a structure limited to a width of 4 or 5 atoms, controlling all the parameters at the same time, demanding a complex prior process.

This is the sixth time that Dr Ortega, leader of the only experimental physics group working on nanostructures in Euskadi, has published an article in Physical Review Lettersz. Regarding the applications for the discovery, the researcher points out that “although, in the field of nanoscience, one always has to go through a number of phases, we cannot discard its utility, certainly in the field of what will be the electronics of the future - nanoelectronics”.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>