Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A mysterious change in the wave properties of electrons

30.09.2004


The electrons of a perfect metallic surface move like free waves in a plane. Nevertheless, if atomic barriers are inserted, this may restrict their movement in one dimension, forming stationary waves such as those on the water surface in a bucket.



The stationary or free behaviour of electron waves is, nevertheless, still something very intriguing, given that the barriers of atoms are very close to each other, there is no confinement, and that the electron recovers its free movement, exactly as was discovered some years ago by the Nanophysics Laboratory research team led by Enrique Ortega at the Donostia-San Sebastian campus of the University of the Basque Country.

The prestigious magazine Physical Review Letters, the most important in the world in the field of Physics, has just published the results of new research this team has been undertaking since 1999 on the wave properties of electrons: the critical size of the step is 2 nanometres, i.e., if the distance of the barriers is superior to 2 nanometres, the electrons form stationary waves; if it is inferior, the waves are free.


More specifically, Enrique Ortega has formed a new nanostructure, i.e. a typical nanometre-sized structure (a nanometre being a thousand millionth or a billionth of a metre) by depositing small quantities of silver on a copper surface. The system arranges itself by forming a network of nanostrips of silver and copper. The copper strips show atomic steps with a step width that depends on the amount of silver deposited. On varying the width, one can observe in detail the transformation of the stationary waves confined between the steps of atomic height in waves of electrons that move freely.

In this way the critical size of the step of 2 nanometres has been discovered: less than this width free waves exist and widths greater than this critical figure are confined. “The detailed study of this transition will be fundamental in the future when establishing the wave properties of electrons in metallic nanostructures", stated Enrique Ortega.

According to Doctor Ortega, the most difficult part of the investigation was constructing the system by which the measurement was to be carried out. These kinds of trials have to be undertaken in ultra high vacuum systems, where not even the smallest particle can be present, as the least amount of contamination will destroy the system. They are also systems difficult to extract information from. Moreover, it is necessary to create a structure limited to a width of 4 or 5 atoms, controlling all the parameters at the same time, demanding a complex prior process.

This is the sixth time that Dr Ortega, leader of the only experimental physics group working on nanostructures in Euskadi, has published an article in Physical Review Lettersz. Regarding the applications for the discovery, the researcher points out that “although, in the field of nanoscience, one always has to go through a number of phases, we cannot discard its utility, certainly in the field of what will be the electronics of the future - nanoelectronics”.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>