Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A mysterious change in the wave properties of electrons


The electrons of a perfect metallic surface move like free waves in a plane. Nevertheless, if atomic barriers are inserted, this may restrict their movement in one dimension, forming stationary waves such as those on the water surface in a bucket.

The stationary or free behaviour of electron waves is, nevertheless, still something very intriguing, given that the barriers of atoms are very close to each other, there is no confinement, and that the electron recovers its free movement, exactly as was discovered some years ago by the Nanophysics Laboratory research team led by Enrique Ortega at the Donostia-San Sebastian campus of the University of the Basque Country.

The prestigious magazine Physical Review Letters, the most important in the world in the field of Physics, has just published the results of new research this team has been undertaking since 1999 on the wave properties of electrons: the critical size of the step is 2 nanometres, i.e., if the distance of the barriers is superior to 2 nanometres, the electrons form stationary waves; if it is inferior, the waves are free.

More specifically, Enrique Ortega has formed a new nanostructure, i.e. a typical nanometre-sized structure (a nanometre being a thousand millionth or a billionth of a metre) by depositing small quantities of silver on a copper surface. The system arranges itself by forming a network of nanostrips of silver and copper. The copper strips show atomic steps with a step width that depends on the amount of silver deposited. On varying the width, one can observe in detail the transformation of the stationary waves confined between the steps of atomic height in waves of electrons that move freely.

In this way the critical size of the step of 2 nanometres has been discovered: less than this width free waves exist and widths greater than this critical figure are confined. “The detailed study of this transition will be fundamental in the future when establishing the wave properties of electrons in metallic nanostructures", stated Enrique Ortega.

According to Doctor Ortega, the most difficult part of the investigation was constructing the system by which the measurement was to be carried out. These kinds of trials have to be undertaken in ultra high vacuum systems, where not even the smallest particle can be present, as the least amount of contamination will destroy the system. They are also systems difficult to extract information from. Moreover, it is necessary to create a structure limited to a width of 4 or 5 atoms, controlling all the parameters at the same time, demanding a complex prior process.

This is the sixth time that Dr Ortega, leader of the only experimental physics group working on nanostructures in Euskadi, has published an article in Physical Review Lettersz. Regarding the applications for the discovery, the researcher points out that “although, in the field of nanoscience, one always has to go through a number of phases, we cannot discard its utility, certainly in the field of what will be the electronics of the future - nanoelectronics”.

Garazi Andonegi | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>