Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First demonstration of new laser-driven accelerator technology

30.09.2004


A team of UK scientists has used, for the first time, an extremely short-pulse laser to accelerate high-energy electrons over an incredibly short distance. Current accelerators can be hundreds of metres long, this is just a millimetre long.

Earlier laser-driven accelerators were inefficient, accelerating the electrons to a wide range of energies. But scientists who wish to use these electron beams to research materials science – such as the structure of viruses and moon rock – need the electrons to have the same energy. The team of scientists, led by Imperial College London and including scientists from the CCLRC Rutherford Appleton Laboratory, the University of Strathclyde and University of California, Los Angeles, has shown for the first time that a laser-driven accelerator can produce a beam of electrons with a narrow range of energies. The results of this experiment will be published in Nature on 30 September 2004.

The experiment was performed at the CCLRC Rutherford Appleton Laboratory near Oxford using the Astra laser. This major breakthrough represents a step towards a new technology which promises to be much cheaper and more compact than the conventional approach and in the future could allow individual universities to afford these accelerators instead of relying on large national laboratories.



Currently there are a few large-scale accelerators around the world, such as CERN - the European laboratory for high energy physics research in Geneva, which is about 10 km across. As scientists try and probe the universe at smaller and smaller scales they need higher energy beams – the current accelerator technology means that the only way to achieve this is to make even bigger accelerators. "Scientists all accept that before long we’ll need a completely new approach to producing the beams of particles required for next generation light sources and high energy physics research. In this experiment we’ve proved that compact, high power lasers can offer a viable new technology,” says Stuart Mangles, one of the researchers from Imperial College London.

Professor Karl Krushelnick from Imperial College London led the team of researchers and explains that though this result is scientifically very significant, it is only the start of further research. "The next step is to increase the energy of the electrons from these laser-driven accelerators – either by increasing the length of the accelerator or by increasing the laser power. We’re still some way off producing a beam of electrons that could be useful for X-ray radiation sources and high energy physics but we’re all really excited by this major step forwards”.

The initial concept of laser Wakefield accelerators was first discussed 25 years ago. It has only been in the last 10 years that the technology has enabled the theory to be realized. Laser Wakefield accelerators were first proposed in 1979 by Toshi Tajima and John Dawson in a famous paper in Physical Review Letters. When an intense laser pulse is focused into a region of gas (helium in these experiments) it ionizes the gas, turning it into a plasma, and can set up a wave travelling behind the pulse at very nearly the speed of light. “This plasma-wave generates a very large electric field that is more than 100 times greater than the electric field of conventional accelerators, and this accelerates the electrons much like surfers are carried along on a wave at a beach,” explains Chris Murphy, another member of the research team based at the Rutherford Appleton Laboratory.

Previous experiments have relied on these plasma waves breaking (just like when a wave breaks on a beach) to produce large numbers of energetic electrons but this wavebreaking process has always produced an unwanted large energy spread. By carefully controlling the laser and plasma parameters the Imperial College team has shown that it is possible to use wavebreaking to produce beams of electrons with a narrow energy spread. That’s why electrons are accelerated to 70MeV in this experiment over a length of just 0.6mm, compared with many metres in a conventional accelerator.

The research was supported through the Research Councils’ Basic Technology Research Programme, which is managed by EPSRC (Engineering and Physical Sciences Research Council) on behalf of all the research councils.

Jacky Hutchinson | alfa
Further information:
http://www.cclrc.ac.uk

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>