Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First demonstration of new laser-driven accelerator technology

30.09.2004


A team of UK scientists has used, for the first time, an extremely short-pulse laser to accelerate high-energy electrons over an incredibly short distance. Current accelerators can be hundreds of metres long, this is just a millimetre long.

Earlier laser-driven accelerators were inefficient, accelerating the electrons to a wide range of energies. But scientists who wish to use these electron beams to research materials science – such as the structure of viruses and moon rock – need the electrons to have the same energy. The team of scientists, led by Imperial College London and including scientists from the CCLRC Rutherford Appleton Laboratory, the University of Strathclyde and University of California, Los Angeles, has shown for the first time that a laser-driven accelerator can produce a beam of electrons with a narrow range of energies. The results of this experiment will be published in Nature on 30 September 2004.

The experiment was performed at the CCLRC Rutherford Appleton Laboratory near Oxford using the Astra laser. This major breakthrough represents a step towards a new technology which promises to be much cheaper and more compact than the conventional approach and in the future could allow individual universities to afford these accelerators instead of relying on large national laboratories.



Currently there are a few large-scale accelerators around the world, such as CERN - the European laboratory for high energy physics research in Geneva, which is about 10 km across. As scientists try and probe the universe at smaller and smaller scales they need higher energy beams – the current accelerator technology means that the only way to achieve this is to make even bigger accelerators. "Scientists all accept that before long we’ll need a completely new approach to producing the beams of particles required for next generation light sources and high energy physics research. In this experiment we’ve proved that compact, high power lasers can offer a viable new technology,” says Stuart Mangles, one of the researchers from Imperial College London.

Professor Karl Krushelnick from Imperial College London led the team of researchers and explains that though this result is scientifically very significant, it is only the start of further research. "The next step is to increase the energy of the electrons from these laser-driven accelerators – either by increasing the length of the accelerator or by increasing the laser power. We’re still some way off producing a beam of electrons that could be useful for X-ray radiation sources and high energy physics but we’re all really excited by this major step forwards”.

The initial concept of laser Wakefield accelerators was first discussed 25 years ago. It has only been in the last 10 years that the technology has enabled the theory to be realized. Laser Wakefield accelerators were first proposed in 1979 by Toshi Tajima and John Dawson in a famous paper in Physical Review Letters. When an intense laser pulse is focused into a region of gas (helium in these experiments) it ionizes the gas, turning it into a plasma, and can set up a wave travelling behind the pulse at very nearly the speed of light. “This plasma-wave generates a very large electric field that is more than 100 times greater than the electric field of conventional accelerators, and this accelerates the electrons much like surfers are carried along on a wave at a beach,” explains Chris Murphy, another member of the research team based at the Rutherford Appleton Laboratory.

Previous experiments have relied on these plasma waves breaking (just like when a wave breaks on a beach) to produce large numbers of energetic electrons but this wavebreaking process has always produced an unwanted large energy spread. By carefully controlling the laser and plasma parameters the Imperial College team has shown that it is possible to use wavebreaking to produce beams of electrons with a narrow energy spread. That’s why electrons are accelerated to 70MeV in this experiment over a length of just 0.6mm, compared with many metres in a conventional accelerator.

The research was supported through the Research Councils’ Basic Technology Research Programme, which is managed by EPSRC (Engineering and Physical Sciences Research Council) on behalf of all the research councils.

Jacky Hutchinson | alfa
Further information:
http://www.cclrc.ac.uk

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>