Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESO Views of Earth-Approaching Asteroid Toutatis

29.09.2004



Today, September 29, 2004, is undisputedly the Day of Toutatis, the famous "doomsday" asteroid.

Not since the year 1353 did this impressive "space rock" pass so close by the Earth as it does today. Visible as a fast-moving faint point of light in the southern skies, it approaches the Earth to within 1,550,000 km, or just four times the distance of the Moon. Closely watched by astronomers since its discovery in January 1989, this asteroid has been found to move in an orbit that brings it close to the Earth at regular intervals, about once every four years. This happened in 1992, 1996, 2000 and now again in 2004.

Radar observations during these passages have shown that Toutatis has an elongated shape, measuring about 4.6 x 2.4 x 1.9 km. It tumbles slowly through space, with a rotation period of 5.4 days. The above images of Toutatis were taken with the ESO Very Large Telescope (during a technical test) in the evening of September 28. They were obtained just over 12 hours before the closest approach that happens today at about 15:40 hrs Central European Summer Time (CEST), or 13:40 hrs Universal Time (UT). At the time of these observations, Toutatis was about 1,640,000 km from the Earth, moving with a speed of about 11 km/sec relative to our planet.



They show the asteroid as a fast-moving object of magnitude 10, about 40 times fainter than what can be perceived with the unaided, dark-adapted eye. They also prove that Toutatis is right on track, following exactly the predicted trajectory in space and passing the Earth at a safe distance, as foreseen. Detailed calculations, taking into account all available observations of this celestial body, have shown that although Toutatis passes regularly near the Earth, today’s passage is the closest one for quite some time, at least until the year 2562. The ESO observations, obtained at a moment when Toutatis was very close to the Earth, will help to further refine the orbital calculations.

The "parallax effect" demonstrated!

Simultaneous images obtained with telescopes at ESO’s two observatories at La Silla and Paranal demonstrate the closeness of Toutatis to the Earth. As can be seen on the unique ESO PR Photo 28e/04 that combines two of the exposures from the two observatories, the sighting angle to Toutatis from the two observatories, 513 km km apart, is quite different. Astronomers refer to this effect as the "parallax". The closer the object is, the larger is the effect, i.e., the larger will be the shift of the line-of-sight.

Interestingly, the measured angular distance in the sky of the beginning and end of the two trails (about 40 arcsec), together with the known distance between the two observatories and the position of Toutatis in the sky at the moment of the exposures fully define the triangle "Paranal-Toutatis-La Silla" and thus allow to calculate the exact distance to the asteroid.

It is found to be very close to that predicted from the asteroid’s position in its orbit and that of the Earth at the moment of this unique observation, 1,607,900 km. This exceptional, simultaneous set of observations thus provides an independent measurement of Toutatis’ distance in space and, like the measured positions, a confirmation of its computed orbit. More information about Toutatis is available at the dedicated webpage by the French discoverers and also at the specialised Near-Earth Objects - Dynamic Site.

The full text of this ESO PR Photo release, with five photos and all weblinks, is available at the above adress:

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2004/phot-28-04.html
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>