Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An important step toward molecular electronics

28.09.2004


Silicon microelectronics has undergone relentless miniaturization during the past 30 years, leading to dramatic improvements in computational capacity and speed. But the end of that road is fast approaching, and scientists and engineers have been investigating another promising avenue: using individual molecules as functional electronic devices.
Now a team of engineers at Northwestern University has become the first to precisely align multiple types of molecules on a silicon surface at room temperature -- an important step toward the goal of molecular electronics.

The results, which demonstrate patterning on a scale 10,000 times smaller than that of microelectronics, are published yesterday (Sept. 27) as the cover story of the journal Applied Physics Letters (APL). "We have demonstrated a strategy for intentionally positioning molecules, which is necessary for the construction of nanoscale systems such as molecular transistors or light-emitting diodes," said Mark C. Hersam, assistant professor of materials science and engineering, who led the research team. "Our process works at room temperature and on silicon, which suggests that it can be made compatible with conventional silicon microelectronics. Ultimately, we want to integrate with current technology, thus creating a bridge between microelectronics and nanoelectronics."


The nanofabrication process, called multi-step feedback-controlled lithography, is useful for a variety of fundamental studies and for the construction and testing of prototype nanoscale devices that could be used in future technologies ranging from consumer electronics to biomedical diagnostics. "Previously we were working with single molecules on silicon," said Hersam. "This new process enables us to build more complex structures. Plus, the technique is general and can be used with many different molecules, which increases its potential."

The researchers demonstrated their process using a custom-built ultrahigh-vacuum scanning tunneling microscope. With this tool, they constructed chains consisting of styrene and a molecule known as TEMPO and now are studying the electronic properties of this novel nanostructure.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>