Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An important step toward molecular electronics

28.09.2004


Silicon microelectronics has undergone relentless miniaturization during the past 30 years, leading to dramatic improvements in computational capacity and speed. But the end of that road is fast approaching, and scientists and engineers have been investigating another promising avenue: using individual molecules as functional electronic devices.
Now a team of engineers at Northwestern University has become the first to precisely align multiple types of molecules on a silicon surface at room temperature -- an important step toward the goal of molecular electronics.

The results, which demonstrate patterning on a scale 10,000 times smaller than that of microelectronics, are published yesterday (Sept. 27) as the cover story of the journal Applied Physics Letters (APL). "We have demonstrated a strategy for intentionally positioning molecules, which is necessary for the construction of nanoscale systems such as molecular transistors or light-emitting diodes," said Mark C. Hersam, assistant professor of materials science and engineering, who led the research team. "Our process works at room temperature and on silicon, which suggests that it can be made compatible with conventional silicon microelectronics. Ultimately, we want to integrate with current technology, thus creating a bridge between microelectronics and nanoelectronics."


The nanofabrication process, called multi-step feedback-controlled lithography, is useful for a variety of fundamental studies and for the construction and testing of prototype nanoscale devices that could be used in future technologies ranging from consumer electronics to biomedical diagnostics. "Previously we were working with single molecules on silicon," said Hersam. "This new process enables us to build more complex structures. Plus, the technique is general and can be used with many different molecules, which increases its potential."

The researchers demonstrated their process using a custom-built ultrahigh-vacuum scanning tunneling microscope. With this tool, they constructed chains consisting of styrene and a molecule known as TEMPO and now are studying the electronic properties of this novel nanostructure.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>