Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atacama rover helps NASA learn to search for life on Mars

28.09.2004


A dedicated team of scientists is spending the next four weeks in northern Chile’s Atacama Desert. They are studying the scarce life that exists there and, in the process, helping NASA learn more about how primitive life forms could exist on Mars.

The NASA-funded researchers are studying the Atacama Desert, described as the most arid region on Earth, to understand the desert as a habitat that represents one of the limits of life on Earth. The project, part of NASA’s Astrobiology Science and Technology Program for Exploring Planets, involves technology experiments to test robotic capabilities for mobility, autonomy and science.

"Identifying living microorganisms and/or fossils in environments where life’s density is among the lowest on the planet should provide leads to establish detection criteria and strategies for Mars or other planetary bodies," explained Dr. Nathalie Cabrol of the SETI Institute, Mountain View, Calif., and NASA Ames Research Center, located in California’s Silicon Valley. She is the project science lead and co-investigator on the "Life in the Atacama" project.



Scientists from Ames, Carnegie Mellon University, Pittsburgh, the University of Tennessee, Knoxville, and the Universidad Catolica del Norte, Antofagasta, Chile, are participating in the study. Scientists are scheduled to conduct their investigation and field experiments in the Atacama through Oct. 21.

They are using Zoe, an autonomous, solar-powered rover developed by researchers at Carnegie Mellon’s Robotics Institute. During the mission, Zoe is expected to travel about two kilometers (1.24 miles) daily and provide panoramic and close-up images. Zoe will employ a variety of other scientific instruments to explore the remote desert. The instruments include a visible-to-near-infrared spectrometer and a fluorescence microscopic imager developed by Carnegie Mellon’s Molecular Biosensor and Imaging Center.

"Our goal is to make genuine discoveries about life and habitats in the Atacama and to create technologies and methods that can be applied to future NASA missions," said David Wettergreen, an associate research professor at Carnegie Mellon’s Robotics Institute. He is leading robotics research for the Life in the Atacama project.

The first phase of the project began in 2003, when a solar-powered robot named Hyperion, also developed at Carnegie Mellon, was taken to the Atacama. Scientists conducted experiments with Hyperion to determine the optimum design, software and instrumentation for a robot for extensive investigations during 2004-05 of desert life. Zoe and its instrument payload are the result of the first year’s research.

"The project is going a step further by trying to understand if signatures of microbial life can be unambiguously detected remotely using a robotic platform," Cabrol said. "These robots and science payloads will be a wonderful precursor to human exploration and excellent ’astronaut/astrobiology assistants’ when the time comes for human missions," she added.

Scientists also plan to map the habitats of the area, including its morphology, geology, mineralogy, texture, physical and elemental properties of rocks and soils; document how life modifies its environment; characterize the geo- and biosignatures of microbial organisms and draft science protocols to support a discovery of life. Ames scientist Chris McKay is conducting a long-term ecological study of the Atacama as a Mars analog environment.

Scientists using EventScope, a remote experience browser developed by researchers at Carnegie Mellon’s Studio for Creative Inquiry, will guide Zoe. EventScope enables scientists to experience the Atacama environment through the eyes and various sensors of the rover. The public can access the same kind of data experienced by scientists by downloading the EventScope interface from the Internet at: http://www.eventscope.org/atacama

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu
http://www.eventscope.org/atacama
http://www.frc.ri.cmu.edu/atacama

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>