Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atacama rover helps NASA learn to search for life on Mars

28.09.2004


A dedicated team of scientists is spending the next four weeks in northern Chile’s Atacama Desert. They are studying the scarce life that exists there and, in the process, helping NASA learn more about how primitive life forms could exist on Mars.

The NASA-funded researchers are studying the Atacama Desert, described as the most arid region on Earth, to understand the desert as a habitat that represents one of the limits of life on Earth. The project, part of NASA’s Astrobiology Science and Technology Program for Exploring Planets, involves technology experiments to test robotic capabilities for mobility, autonomy and science.

"Identifying living microorganisms and/or fossils in environments where life’s density is among the lowest on the planet should provide leads to establish detection criteria and strategies for Mars or other planetary bodies," explained Dr. Nathalie Cabrol of the SETI Institute, Mountain View, Calif., and NASA Ames Research Center, located in California’s Silicon Valley. She is the project science lead and co-investigator on the "Life in the Atacama" project.



Scientists from Ames, Carnegie Mellon University, Pittsburgh, the University of Tennessee, Knoxville, and the Universidad Catolica del Norte, Antofagasta, Chile, are participating in the study. Scientists are scheduled to conduct their investigation and field experiments in the Atacama through Oct. 21.

They are using Zoe, an autonomous, solar-powered rover developed by researchers at Carnegie Mellon’s Robotics Institute. During the mission, Zoe is expected to travel about two kilometers (1.24 miles) daily and provide panoramic and close-up images. Zoe will employ a variety of other scientific instruments to explore the remote desert. The instruments include a visible-to-near-infrared spectrometer and a fluorescence microscopic imager developed by Carnegie Mellon’s Molecular Biosensor and Imaging Center.

"Our goal is to make genuine discoveries about life and habitats in the Atacama and to create technologies and methods that can be applied to future NASA missions," said David Wettergreen, an associate research professor at Carnegie Mellon’s Robotics Institute. He is leading robotics research for the Life in the Atacama project.

The first phase of the project began in 2003, when a solar-powered robot named Hyperion, also developed at Carnegie Mellon, was taken to the Atacama. Scientists conducted experiments with Hyperion to determine the optimum design, software and instrumentation for a robot for extensive investigations during 2004-05 of desert life. Zoe and its instrument payload are the result of the first year’s research.

"The project is going a step further by trying to understand if signatures of microbial life can be unambiguously detected remotely using a robotic platform," Cabrol said. "These robots and science payloads will be a wonderful precursor to human exploration and excellent ’astronaut/astrobiology assistants’ when the time comes for human missions," she added.

Scientists also plan to map the habitats of the area, including its morphology, geology, mineralogy, texture, physical and elemental properties of rocks and soils; document how life modifies its environment; characterize the geo- and biosignatures of microbial organisms and draft science protocols to support a discovery of life. Ames scientist Chris McKay is conducting a long-term ecological study of the Atacama as a Mars analog environment.

Scientists using EventScope, a remote experience browser developed by researchers at Carnegie Mellon’s Studio for Creative Inquiry, will guide Zoe. EventScope enables scientists to experience the Atacama environment through the eyes and various sensors of the rover. The public can access the same kind of data experienced by scientists by downloading the EventScope interface from the Internet at: http://www.eventscope.org/atacama

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu
http://www.eventscope.org/atacama
http://www.frc.ri.cmu.edu/atacama

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>