Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL’s Spallation Neutron Source warms up for 2006

27.09.2004


The warm section will provide 20 percent of the total acceleration of the Spallation Neutron Source’s linear accelerator.


With the recent "warm commissioning" of its linear accelerator, Oak Ridge National Laboratory’s Spallation Neutron Source (SNS) has passed a crucial test and milestone on its way to completion in 2006.

The SNS’s linear accelerator, or linac, is composed of two sections: the "warm," or room temperature section, and a superconducting section that operates at temperatures hundreds of degrees below zero. Los Alamos National Laboratory, part of the team of six DOE national laboratories collaborating on the SNS construction project, is responsible for the warm linac. "The successful commissioning of the warm linac is another step toward the 2006 completion of the SNS, and again demonstrates the success of the collaboration of national labs in keeping the project on time, on budget and on scope," said SNS Director Thom Mason.

The warm section will provide 20 percent of the total acceleration of the 1,000-foot-long linac. The linac’s superconducting section, provided by the Thomas Jefferson National Accelerator Facility, will provide 80 percent of linac acceleration. Testing also has begun of components of the superconducting portion, which consists of niobium cavities chilled by liquid helium to minus 456 degrees Fahrenheit.



Members of the Los Alamos SNS Division celebrated a job well done when components of the warm linac were shipped from the New Mexico laboratory to the project site in East Tennessee in April. "Professionally, this was the job of a lifetime: being able to contribute to DOE Office of Science’s biggest project," said Los Alamos SNS Division Leader Don Rej. "The excitement of working on big projects like this one comes from solving a seemingly endless string of insoluble problems, and solving them within budget and schedule constraints."

Because of their lack of charge, neutrons have a superior ability to penetrate materials. Researchers can determine a material’s molecular structure by analyzing the way the neutrons bounce, or scatter, after striking atoms within the structure. Using computational methods and state of the art instruments, researchers will better understand the molecular reasons behind the materials’ properties, which even with existing resources has resulted in the development of superior materials.

The SNS will produce neutrons for materials, biological and other scientific research by sending a high-energy beam of protons down a 1,000-foot linear accelerator to ultimately strike a mercury target, which will "spall" neutrons that are directed to the host of analytical instruments. "The warm linac commissioning is significant because it verifies the performance of the entire warm linac and ensures successful operation of the entire facility," said SNS Accelerator Systems Division Director Norbert Holtkamp. "Testing of the cold linac components is time critical to allow for the transition of the tests from Jefferson Lab to ORNL, which is a major step toward the transition from construction to operation."

The SNS will increase the number of neutrons available to researchers nearly tenfold, providing clearer images of molecular structures. Combined with ORNL’s High Flux Isotope Reactor, the SNS will represent the world’s foremost facility for neutron scattering analysis, a technique pioneered at ORNL shortly after World War II.

In addition to Los Alamos and Jefferson Lab, four other national laboratories collaborate on the DOE Office of Science project: Oak Ridge, Argonne, Lawrence Berkeley and Brookhaven. Berkeley Lab has completed the "front end," where the proton beam is initially generated. Brookhaven has responsibility for the SNS’s accumulator ring, a stage between the linac and target. Argonne leads the design of the facility’s scientific instruments. ORNL is responsible for the target and will be responsible for operating the SNS.

When completed in 2006, SNS will become the world’s leading research facility for study of the structure and dynamics of materials using neutrons. It will operate as a user facility that will enable researchers from the United States and abroad to study the science of materials that forms the basis for new technologies in energy, telecommunications, manufacturing, transportation, information technology, biotechnology and health.

Oak Ridge National Laboratory is a multiprogram laboratory managed for the Department of Energy by UT-Battelle.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>