Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL’s Spallation Neutron Source warms up for 2006

27.09.2004


The warm section will provide 20 percent of the total acceleration of the Spallation Neutron Source’s linear accelerator.


With the recent "warm commissioning" of its linear accelerator, Oak Ridge National Laboratory’s Spallation Neutron Source (SNS) has passed a crucial test and milestone on its way to completion in 2006.

The SNS’s linear accelerator, or linac, is composed of two sections: the "warm," or room temperature section, and a superconducting section that operates at temperatures hundreds of degrees below zero. Los Alamos National Laboratory, part of the team of six DOE national laboratories collaborating on the SNS construction project, is responsible for the warm linac. "The successful commissioning of the warm linac is another step toward the 2006 completion of the SNS, and again demonstrates the success of the collaboration of national labs in keeping the project on time, on budget and on scope," said SNS Director Thom Mason.

The warm section will provide 20 percent of the total acceleration of the 1,000-foot-long linac. The linac’s superconducting section, provided by the Thomas Jefferson National Accelerator Facility, will provide 80 percent of linac acceleration. Testing also has begun of components of the superconducting portion, which consists of niobium cavities chilled by liquid helium to minus 456 degrees Fahrenheit.



Members of the Los Alamos SNS Division celebrated a job well done when components of the warm linac were shipped from the New Mexico laboratory to the project site in East Tennessee in April. "Professionally, this was the job of a lifetime: being able to contribute to DOE Office of Science’s biggest project," said Los Alamos SNS Division Leader Don Rej. "The excitement of working on big projects like this one comes from solving a seemingly endless string of insoluble problems, and solving them within budget and schedule constraints."

Because of their lack of charge, neutrons have a superior ability to penetrate materials. Researchers can determine a material’s molecular structure by analyzing the way the neutrons bounce, or scatter, after striking atoms within the structure. Using computational methods and state of the art instruments, researchers will better understand the molecular reasons behind the materials’ properties, which even with existing resources has resulted in the development of superior materials.

The SNS will produce neutrons for materials, biological and other scientific research by sending a high-energy beam of protons down a 1,000-foot linear accelerator to ultimately strike a mercury target, which will "spall" neutrons that are directed to the host of analytical instruments. "The warm linac commissioning is significant because it verifies the performance of the entire warm linac and ensures successful operation of the entire facility," said SNS Accelerator Systems Division Director Norbert Holtkamp. "Testing of the cold linac components is time critical to allow for the transition of the tests from Jefferson Lab to ORNL, which is a major step toward the transition from construction to operation."

The SNS will increase the number of neutrons available to researchers nearly tenfold, providing clearer images of molecular structures. Combined with ORNL’s High Flux Isotope Reactor, the SNS will represent the world’s foremost facility for neutron scattering analysis, a technique pioneered at ORNL shortly after World War II.

In addition to Los Alamos and Jefferson Lab, four other national laboratories collaborate on the DOE Office of Science project: Oak Ridge, Argonne, Lawrence Berkeley and Brookhaven. Berkeley Lab has completed the "front end," where the proton beam is initially generated. Brookhaven has responsibility for the SNS’s accumulator ring, a stage between the linac and target. Argonne leads the design of the facility’s scientific instruments. ORNL is responsible for the target and will be responsible for operating the SNS.

When completed in 2006, SNS will become the world’s leading research facility for study of the structure and dynamics of materials using neutrons. It will operate as a user facility that will enable researchers from the United States and abroad to study the science of materials that forms the basis for new technologies in energy, telecommunications, manufacturing, transportation, information technology, biotechnology and health.

Oak Ridge National Laboratory is a multiprogram laboratory managed for the Department of Energy by UT-Battelle.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>