Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doh! New format could store all of Homer’s life on one optical disk

27.09.2004


Physicists at Imperial College London are developing a new optical disk with so much storage capacity that every episode of The Simpsons made could fit on just one.



Speaking at the Asia-Pacific Data Storage Conference 2004 in Taiwan today, Dr Peter Török, Lecturer in Photonics in the Department of Physics, will describe a new method for potentially encoding and storing up to one Terabyte (1,000 Gigabytes) of data, or 472 hours of film, on one optical disk the size of a CD or DVD.

All 350 scheduled episodes of The Simpsons, totalling 8,080 minutes of film, could be easily stored on the new disk, dubbed MODS - for Multiplexed Optical Data Storage - by the Imperial College team.


The 1TB disk would be double sided and dual layer, but even a single sided, single layer, MODS disk could hold the Lord of the Rings trilogy 13 times over, or all 238 episodes of Friends. (See Notes to Eds for more comparisons).

MODS disks will not be the first to challenge DVDs’ domination of the audiovisual optical disk market. BluRay disks, which have five times the capacity of a DVD at 25GB per layer, are expected to be released towards the end of 2005 for the home market.

The Imperial researchers, working closely with colleagues at the Institute of Microtechnology, University of Neuchâtel, Switzerland, and in the Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece, estimate that MODS disks would cost approximately the same to manufacture as an ordinary DVD and that any system playing them would be backwards compatible with existing optical formats – meaning that CDs and DVDs could be played on a MODS system. Dr Török believes that the first disks could be on the shelves between 2010 and 2015 if his team are able to secure funding for further development.

“According to our experimental results, we can optimistically estimate that we will be able to store about one Terabyte per disk in total using our new method,” said Dr Török, leader of the research. “This translates to about 250GB per layer, 10 times the amount that a BluRay disk can hold.”

The Imperial researchers and colleagues at Neuchâtel and Thessaloniki filed a patent covering their ideas in July 2004.

Under magnification the surface of CDs and DVDs appear as tiny grooves filled with pits and land regions. These pits and land regions represent information encoded into a digital format as a series of ones and noughts. When read back, CDs and DVDs carry one bit per pit, but the Imperial researchers have come up with a way to encode and retrieve up to ten times the amount of information from one pit.

Unlike existing optical disks, MODS disks have asymmetric pits, each containing a ‘step’ sunk within at one of 332 different angles, which encode the information. The Imperial researchers developed a method that can be used to make a precise measurement of the pit orientation that reflects the light back. A different physical phenomenon is used to achieve the additional gain.

“We came up with the idea for this disk some years ago,” says Dr Török. “But did not have the means to prove whether it worked. To do that we developed a precise method for calculating the properties of reflected light, partly due to the contribution of Peter Munro, a PhD student working with me on this project. We are using a mixture of numerical and analytical techniques that allow us to treat the scattering of light from the disk surface rigorously rather than just having to approximate it.”

Increasingly manufacturers are looking at miniaturising the size of optical disks, says Dr Török. “Multiplexing and high density ODS comes in handy when manufacturers talk about miniaturisation of the disks,” he says. “In 2002 Philips announced the development of a 3cm diameter optical disk to store up to 1GB of data. The future for the mobile device market is likely to require small diameter disks storing much information. This is where a MODS disk could really fill a niche.”

Imperial College Innovations Ltd, the College’s wholly owned technology transfer company, managed and helped to prepare the patent application.

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>