Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK astronomers use Hubble’s most sensitive image of the Universe to find extremely distant star forming galaxies

24.09.2004


The recently released Hubble Space Telescope Ultra Deep Field (HUDF) - the most sensitive image of the distant universe ever obtained - has provided UK astronomers with a window on star formation when the universe was young, revealing some of the earliest star forming galaxies yet detected.

The research was led by Dr Andrew Bunker at the University of Exeter and graduate student Elizabeth Stanway at the Institute of Astronomy at Cambridge University. Their results have been accepted for publication in the journal ’Monthly Notices of the Royal Astronomical Society’.

This UK team was the first to analyse the Ultra Deep Field images, generating their results within a day of the data becoming available. Their work has been confirmed by other groups researching in the field, and is the subject of a NASA press conference at the Space Telescope Science Institute, Baltimore today (23 September 2004).



Bunker and colleagues identified fifty objects likely to be galaxies from the HUDF data that looked 95 per cent of the way back to the beginning of the Universe. The redshifts of these galaxies are about 6 - so far away that light from them has taken 13 billion years to reach us. This is more than twice the age of our Solar System, and the galaxies which the UK team have discovered existed when the universe was less than a billion years old. "Intervening gas clouds absorbed visible light from these galaxies long before it reached Earth, but their infrared light can be detected," explained Elizabeth Stanway, "and it is their infrared colours which lead us to believe that these galaxies lie at such immense distances."

The astronomers turned to two of the largest telescopes in the world, the 10-metre Keck telescope, in Hawaii, and the 8-metre Gemini telescope in Chile to verify their findings with spectroscopic techniques. In some of these spectra they saw the hydrogen gas glowing as it was illuminated by hot, newly-born stars. "These galaxies are in the process of giving birth to stars - each year they convert a mass of gas more than that of our sun into new stars," said Professor Richard Ellis of the California Institute of Technology.

"Using the largest optical telescope, Keck, was very important as it showed that this population of objects discovered by the Hubble Space Telescope really are incredibly distant", added Andrew Bunker, who was also part of the team which did the observing in Hawaii.
But these discoveries pose a cosmic puzzle: on the basis of their sample, the UK team can calculate how fast stars are being born in distant galaxies at redshift 6. They have compared the answer with previous work looking at nearer galaxies, with redshifts around 3. "It seems that there are fewer of these galaxies early in the history of the Universe at redshift 6, compared to more recent times," said Andrew Bunker.

Richard McMahon, another of the Cambridge team, explained the importance of exploring these high redshifts: "At this early time in the history of the universe, a major phase change occurred. The space between galaxies was filled with largely neutral gas, but suddenly this was ionised - forming a plasma." The main candidate for what caused this is ultraviolet radiation, which can be generated as stars are born. Yet, the small number of star forming galaxies found in the Ultra Deep Field may not be sufficient to do this.

It is possible that the first stars and galaxies were born at even earlier times, and this will be explored by the successor to Hubble, the James Webb Space Telescope, which will operate in the infrared.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>