Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At Molecular Scale, Vibrational Couplings Define Heat Conduction

23.09.2004


Too much heat can destroy a sturdy automobile engine or a miniature microchip. As scientists and engineers strive to make ever-smaller nanoscale devices, from molecular motors and switches to single-molecule transistors, the control of heat is becoming a burning issue.

The shapes of molecules really matter, say scientists from the University of Illinois at Urbana-Champaign and the University of Scranton who timed the flow of vibrational heat energy through a water-surfactant-organic solvent system. The rate at which heat energy moves through a molecule depends specifically on the molecule’s structure, they found. "The flow of vibrational energy across a molecule is dependent upon where and how the energy is deposited," said Dana Dlott, a professor of chemistry at Illinois and a co-author of a paper to appear in the journal Science, as part of the Science Express Web site, on Sept. 23. "Unlike normal heat conduction, different excitations may travel across the molecule along different paths and at different rates."

To monitor energy flow, Dlott and his colleagues - Scranton chemistry professor John Deak, Illinois postdoctoral research associate Zhaohui Wang and graduate student Yoonsoo Pang, and Scranton undergraduate student Timothy Sechler - used an ultrafast laser spectrometer technique with picosecond time resolution.

The system the scientists studied is called a reverse micelle, and consisted of a nanodroplet containing 35 water molecules enclosed in a sphere of surfactant (sodium dioctyl sulfosuccinate) one molecule thick that was suspended in carbon tetrachloride. The ultrafast laser technique, developed at Illinois, monitored vibrational energy flow as it moved from water, through the surfactant shell out to the organic solvent, atom by atom.

When the researchers deposited energy in the nanodroplet, the vibrations moved through the surfactant and into the carbon tetrachloride within 10 picoseconds. However, when the energy was deposited directly into the surfactant, the vibrations required 20 to 40 picoseconds to move into the carbon tetrachloride. Even though the distance was shorter, the energy transfer took significantly longer. "This is opposite of what you would think in terms of simple and ordinary heat conduction," Dlott said. "To explain this strange result, we have to analyze the energy transfer in terms of specific vibrational couplings that occur through a vibrational cascade."

There are hundreds of different vibrations in the water-surfactant-organic solvent system, Dlott said. "When energy moves through molecules, the detailed structure of the molecules and the way the vibrations interact are extremely important."

When the water was excited by a laser pulse, the scientists report, much of the energy was immediately moved to the surfactant, which then efficiently transferred the energy to the carbon tetrachloride. But when the surfactant was excited by the laser, the energy took a different path among the atoms, delaying the transfer to the carbon tetrachloride.

"The movement of vibrational energy within and between molecules is a fundamental process that plays a significant role in condensed matter physics and chemistry," Dlott said. "In designing nanoscale devices, the shapes of the molecules must be designed not only to be small and fast, but also to efficiently move heat."

The National Science Foundation, the Air Force Office of Scientific Research and the U.S. Department of Energy supported this work.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>