Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proving That Shape-Shifting Robots Can Get A Move On

17.09.2004


It started with tennis balls. As a former collegiate tennis player, Daniela Rus habitually rolls two tennis balls around in her hand as she paces her office. As a robotics researcher at Dartmouth College, she wondered why the tennis balls shouldn’t be able to roll themselves around.


Nine Crystal robot modules developed in the Dartmouth Robotics Lab form a 2-D self-reconfigurable modular robot system composed of atoms. Each atom is a square that moves by expanding and contracting by a factor of two in each dimension. Credit: Robert Fitch, Dartmouth College



She soon determined that electromagnets didn’t have enough lifting power to solve the tennis-ball problem. However, her question led to a decade-long research program into the challenges of designing robots that reconfigure themselves to perform different tasks. Most recently, Rus and Dartmouth Robotics Lab researchers developed the first control methods that guarantee such self-reconfigurable robots won’t fall apart as they change shape or move across a surface.

The paper by postdoctoral researcher Zach Butler, graduate student Keith Butler, Rus and visiting professor Kohji Tomita from Japan’s National Institute of Advanced Industrial Science and Technology appeared in the September 2004 issue of the International Journal of Robotics Research (IJRR).


"These latest papers show it is possible to develop self-reconfiguration capabilities in a way that has analytical guarantees," said Rus, who moved to MIT in January after 10 years as director of Dartmouth’s Robotics Lab. "Understanding exactly how your system works and when you can trust it and when you can’t is very important." In 2002, Rus received a MacArthur Foundation Fellowship, a so-called "genius award," for her work, which has been supported by National Science Foundation (NSF) awards since 1996.

Robots are usually designed to perform one task very well, whether it’s assembling parts in a factory or vacuuming the living room. But ask those robots to perform another task or even the same task in a new environment, and you’re asking for trouble.

Self-reconfigurable robots, on the other hand, can reshape themselves as their task or environment changes, ideally without human intervention. A walking robot used for search-and-rescue operations would transform into a snake-like form to slither through small spaces in a collapsed building. A rolling robot exploring the surface of Mars would flow like water over a vertical drop or "flow" uphill onto a rock ledge.

However, today’s state-of-the-art shape-shifting robots are a long way from living up to that vision. Several research groups around the world are tackling the many significant mechanical and control challenges involved in having a robot change shape.

Over the past decade, assisted by more than 50 Dartmouth undergraduate and graduate students passing through her lab, Rus has made advances on both the mechanical and control fronts. On the mechanical side, she pioneered the design of 3-D shape-shifting robots built out of "expanding cubes," such as the Crystal modules.

Each Crystal module, or "atom," has sides that extend and contract and that use a ’key-in-lock’ mechanism to attach to neighboring atoms. The expanding-cube concept is an example of so-called "lattice robots," which can assume a wide variety of 3-D shapes, an advantage over robots whose modules can only form long, thin chains.

Shape-shifting for such lattice robots boils down to exercises in control and planning, which happen at two levels. At one level, the robot must plan how to remodel itself from shape A to shape B. At another level, the robot must also plan the series of shapes needed to accomplish more complicated tasks, such as moving over rough terrain.

Early work in self-reconfiguring robots used centralized methods to control how the pieces reassembled themselves. Today, researchers in the field generally acknowledge the need for distributed methods, in which each robotic module takes at least some control of its own destiny.

"Since we are talking about potentially very large systems, with thousands of individual parts, it’s important to consider distributed control and planning," Rus said. "And parallel and distributed algorithms are hard to guarantee."

The recent IJRR paper and a related paper in the September 2003 IJRR by Butler and Rus provide some of the first distributed methods for generating provably correct steps for both types of control and planning. In other words, robots that reconfigure themselves using these plans won’t fall to pieces, in a very literal sense, or get irreversibly stuck as they move from place to place.

The papers present sets of about a dozen rules that instruct lattice robots how to roam over terrain, build tall structures to overcome obstacles or enter closed spaces through small tunnels. Rus and her colleagues analyzed the simpler rule sets for correctness and developed automated methods to prove that the more complicated ones worked. More complex tasks, however, demand more complicated rule sets, and Rus is now investigating ways that would allow robots to learn their own rules.

In addition to the theoretical guarantees, the papers represent a departure from another norm. Often in robotics, a control method is tied to specific hardware, making it more difficult to apply lessons from one robot system to another. Rus’s work applies to control and planning for the entire class of lattice robots, of which the Crystal atoms are one example.

"The [latest IJRR] paper is an example of a methodology for developing and proving algorithms and understanding control systems in general," Rus said. "It’s important to learn more general lessons. You get a deeper sense about the self-reconfiguration problem."

David Hart | NSF News
Further information:
http://www.nsf.gov
http://www.cs.dartmouth.edu/~robotlab/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>