Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foreseeing the Sun’s fate: Astronomical interferometry reveals the close environment of Mira stars

17.09.2004


The mean size of the observed Mira stars and their surrounding molecular layer is compared to the size of the inner Solar System. The Earth’s, Mars’ and Jupiter’s orbits are shown, as well as the Sun’s position. The picture illustrates that when the Sun becomes a Mira-type star in about 5 billion years, it will nearly reach Mars’ orbit and its surrounding molecular layer will extend far beyond Mars.


For the first time, an international team of astronomers led by Guy Perrin from the Paris Observatory/LESIA, (Meudon, France) and Stephen Ridgway from the National Optical Astronomy Observatory (Tucson, Arizona, USA) has observed the close environment of five so-called red giant Mira stars, using astronomical interferometric techniques. They found that the observed Mira stars are embedded in a shell of water vapor and possibly of carbon monoxide that extends to twice the stellar radius. Studying these Mira stars is of particular interest since they are now undergoing a late stage of the evolution that one-solar mass stars, including our Sun, experience. Therefore, these stars illustrate the fate of our Sun five billion years from now. Would such a star, including its surrounding shell, be located at the Sun’s position in our solar system, it would extend far beyond Mars.

Although they are really very large (up to a few hundred solar radii), red giant stars are point-like to the unaided human eye on Earth, and even the largest telescopes fail to distinguish their surfaces. This challenge can be overcome by combining signals from separate telescopes using a technique called “astronomical interferometry” that makes it possible to study very small details in the close surroundings of Mira stars. Ultimately, images of the observed stars can be reconstructed.

Mira stars, named after the first such known object, Mira (omicron Ceti), have been observed for more than 400 years by astronomers both professional and amateur. This class of variable red giants is famous for their pulsations that last for 80-1000 days and that cause their apparent brightness to vary by ten or more during a cycle at visible wavelengths. A possible explanation of their significant variability is that large amounts of material, including dust and molecules, are produced during each cycle. This material blocks the stellar radiation until the material becomes diluted by expansion. The close environment of Mira stars is therefore complex, and the characteristics of the central object are difficult to observe.



To study the close environment of these stars, the team led by Guy Perrin and Stephen Ridgway carried out interferometric observations at the Infrared-Optical Telescope Array (IOTA) of the Smithsonian Astrophysical Observatory in Arizona. IOTA is a Michelson stellar interferometer [2], with two arms forming an L-shaped array. It operates with three collectors that can be located at different stations on each arm. In the framework of the present study, observations were made at several wavelengths using different telescope spacings ranging from 10 to 38 meters.

From these observations, the team was able to reconstruct the variation of the stellar brightness with the distance from the star’s center for each star. Details down to about 10 milli-arcseconds can be detected. At Mira’s distance from the Earth, that corresponds to details of about 200 million kilometers. In comparison, at the Moon’s distance, that would correspond to details of only 20 meters.

The observations were made at near-infrared wavelengths that are of particular interest for the study of water vapor (H2O) and carbon monoxide (CO). The role played by these molecules was suspected some years ago by the team and independently confirmed by observations with the Infrared Space Observatory. It is now clearly demonstrated: the five observed Mira stars are surrounded by a molecular layer made of water vapor and, at least in some cases, of carbon monoxide. This layer has a temperature of about 2000 K and extends to about one stellar radius above the stellar photosphere.

For the first time, an in-depth description of the close environment of a Mira star has been achieved. Previous interferometric studies of Mira stars led to estimates of star diameters that were biased by the presence of the molecular layer and were thus much overestimated. This new result shows that the Mira stars are about 30% smaller as previously believed. The space between the star’s surface and the molecular layer very likely contains gas, like an atmosphere, but it is relatively transparent at the observed wavelengths. In visible light, the molecular layer is rather opaque, giving the impression that it is a surface, but in the infrared, it is thin and the star can be seen through it.

The observations presented by the team are interpreted in the framework of a model that bridges the gap between observations and theory. This model is the first ever to explain the structure of Mira stars over a wide range of spectral wavelengths from the visible to the mid-infrared and to be consistent with the theoretical properties of their pulsation. Indeed, for the first time, the size measurements of Mira stars are in agreement with the models that describe their pulsating behaviour. However, the presence of the layer of molecules far above the stellar surface is still somewhat mysterious. The layer is too high and dense to be supported purely by atmospheric pressure. The pulsations of the star probably play a role in producing the molecular layer, but the mechanism is not yet understood.

Mira stars eject large amounts of gas and dust into space, typically about 1/3 of the Earth’s mass per year, thus providing more than 75% of the molecules in the Galaxy, including most of those we are made. Better knowledge of the atmospheres of Mira stars is a clue to understanding this mechanism that still remains a speculation. Additionally, as Mira stars occupy a late evolutionary stage of Sun-like stars, it is crucial to better describe the processes that occur in and around these stars. If a Mira star and its 2000 K surrounding layer were located at the Sun’s position in the Solar System (see Figure 1), the molecular layer of such a star would extend to the asteroid belt between the orbits of Mars and Jupiter, far beyond the Earth’s orbit. One can thus foresee the eventual envelopment of the Earth by the expanding Sun, after it evolves as a Mira star, 5 billion years from now.

Jennifer Martin | alfa
Further information:
http://www.obspm.fr/aanda

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>