Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s best view of the stars - Antarctica’s Dome C

16.09.2004


A small unmanned observatory high on the Antarctic plateau provides the best star-viewing site on Earth, according to research published today in Nature.



Australian researchers have shown than a ground-based telescope in Antarctica can take images almost as good as those from the Hubble Space Telescope, at a fraction of the cost. "It represents arguably the most dramatic breakthrough in the potential for ground-based optical astronomy since the invention of the telescope," says University of New South Wales Associate Professor Michael Ashley, who co-authored the Nature paper.

"The discovery means that a telescope at Dome C on the Antarctic plateau could compete with a telescope two to three times larger at the best mid-latitude observatories, with major cost-saving implications. "Dome C could become an important ’test-bed’ for experiments and technologies that will later be flown as space missions. Indeed, for some projects, the site might be an attractive alternative to space based astronomy."


Astronomical observations made by Australian astronomers at Dome C on the Antarctic Plateau, 3250 m above sea-level, prove that the site has less "star jitter" than the best mid-latitude observatories in Hawaii, Chile and the Canary Islands.

While Antarctica has long been recognised as having characteristics that make it a potentially excellent site for astronomy, seeing conditions at the South Pole itself (latitude 90 degrees south) are poor due to atmospheric turbulence within 200 - 300 m of the ground. By contrast, Dome C, located at latitude 75 degrees south, has several atmospheric and site characteristics that make it ideal for astronomical observations.

The site’s atmospheric characteristics include low infrared sky emission, extreme cold and dryness, a high percentage of cloud free time, and low dust and aerosol content - features that confer significant benefits for all forms of astronomy, especially infrared and sub-millimetre.

Dome C is 400 m higher than the South Pole and further inland from the coast. Being a "dome" - a local maximum in the elevation of the terrain - it experiences much lower peak and average wind speeds, which has a profound beneficial effect on the performance of astronomical instruments. Like other regions on the Antarctic plateau, it shares the advantages of a lack of seismic activity and low levels of light pollution.

A key issue in considering where to locate new generation ground-based optical telescopes is to choose a site with excellent ’seeing’. Seeing is defined as the amount of star jitter or sharpness of astronomical images, which is affected by atmospheric conditions close to Earth. "The sharpness of the astronomical images at Dome C is two to three times better than at the very best sites currently used by astronomers, including those in Chile, Hawaii and the Canary Islands," says A/Prof Ashley.

"This implies a factor of ten increase in sensitivity. Put another way, an 8 metre infrared telescope on the Antarctic Plateau could achieve the sensitivity limits of a hypothetical 25 metre telescope anywhere else. "It means there’s now a fantastic opportunity now for Australian astronomers to build world-beating telescopes at the site. I expect the romance and adventure of this combination of astronomy and Antarctica will inspire the next generation of young scientists."

The observations at Dome C represent a stunning technical achievement, according to the paper’s lead author, Dr Jon S. Lawrence, a University of New South Wales Postdoctoral Fellow. "We set up a self contained robotic observatory called AASTINO (Automated Astronomical Site Testing International Observatory) at Dome C in January 2004. Powered by two engines, the facility has heat and electrical power that allowed us to communicate with site testing equipment, computers and telescopes via an Iridium satellite network.

"The entire experiment was controlled remotely -- we didn’t turn the telescope on until we returned home," says Dr Lawrence. "When we left there in February we said goodbye to it knowing all that we could do was communicate with it by the phone and the Internet. If we’d needed to press a reset button on a computer or something, there was no way to do so, and the entire experiment could have failed. "As it turns out, we’ve made some exceptional findings and published a paper in Nature before even returning to the site. We’re pretty thrilled about it."

Michael Ashley | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>