Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists tame ’hip hop’ atoms

16.09.2004


Precision placement may help in building nanoscale devices

In an effort to put more science into the largely trial and error building of nanostructures, physicists at the Commerce Department’s National Institute of Standards and Technology (NIST) have demonstrated new methods for placing what are typically unruly individual atoms at precise locations on a crystal surface. Reported in the Sept. 9, 2004, online version of the journal Science, the advance enables scientists to observe and control, for the first time, the movement of a single atom back and forth between neighboring locations on a crystal and should make it easier to efficiently build nanoscale devices "from the bottom up," atom by atom.

The NIST team was surprised to find that the atoms emitted a characteristic electronic "noise" as they moved between two different types of bonding sites on the crystal surface. By converting this electronic signal into an audio signal, the researchers were able to "hear" the switching take place. The sound resembles a hip hop musician’s rhythmic "scratching" and can be used by researchers to know in real time that atoms have moved into desired positions.



Several research groups already are using specialized microscopes to build simple structures by moving atoms one at a time. The NIST advance makes it easier to reliably position atoms in very specific locations. "What we did to the atom is something like lubricating a ball bearing so that less force is required to move it," says Joseph Stroscio, co-author of the Science paper.

Such basic nanoscale construction tools will be essential for computer-controlled assembly of more complex atomic-scale structures and devices. These devices will operate using quantum physics principles that only occur at the atomic scale, or may be the ultimate miniaturization of a conventional device, such as an "atomic switch" where the motion of a single atom can turn electrical signals on and off.

The research involved using a custom-built, cryogenic scanning tunneling microscope (STM) to move a cobalt atom around on a bed of copper atoms that are closely packed in a lattice pattern. In a typical STM, a needle-like tip is scanned over an electrically conducting surface and changes in current between the tip and the surface are used to make three-dimensional images of the surface topography. The tip can be brought closer to the surface to push or pull the cobalt atom.

In the research described in Science, NIST scientists discovered that the cobalt atom responds to both the STM tip and the copper surface, and that the atom "hops" back and forth between nearby bonding sites instead of gliding smoothly. With slight increases in the current flowing through the tip to the atom, the researchers were able to make the cobalt atom heat up and vibrate and weaken the cobalt-copper bonds. This induced the cobalt atom to hop between the two types of lattice sites, with the rate of transfer controlled by the amount of current flowing.

The NIST researchers also found that they could use the STM tip to reshape the energy environment around the cobalt atom. This allows control over the amount of time the cobalt atom spends in one of the lattice sites. Using this technique the researchers found they can even trap the cobalt atom in a lattice site that the atom normally avoids. Sounds of the "protesting" atom give rise to the "hip hop" scratching sound described in Science. "The impact of the work is twofold," says Stroscio. "We learned about the basic physics involved in atom manipulation, which will help us build future atomic-scale nanostructures and devices. We also learned that we can control the switching of a single atom, which has potential for controlling electrical activity in those devices."

The experiments represent initial steps in exploring a new system of measurement, atom-based metrology, in which single atoms are used as nanoscale probes to collect information about their environment. In particular, the NIST-built instrument can be used to draw detailed maps of binding sites on a metal surface that cannot be made with standard STM measurements.

The new results are among the earliest to be published based on work performed at NIST’s nanoscale physics facility, where scientists are using a computer-controlled STM to autonomously manipulate and control individual atoms, with the intent to build useful devices and nanostructures.

Laura Ost | EurekAlert!
Further information:
http://physics.nist.gov/Divisions/Div841/Gp3/Facilities/nano_phy.html
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>