Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists tame ’hip hop’ atoms

16.09.2004


Precision placement may help in building nanoscale devices

In an effort to put more science into the largely trial and error building of nanostructures, physicists at the Commerce Department’s National Institute of Standards and Technology (NIST) have demonstrated new methods for placing what are typically unruly individual atoms at precise locations on a crystal surface. Reported in the Sept. 9, 2004, online version of the journal Science, the advance enables scientists to observe and control, for the first time, the movement of a single atom back and forth between neighboring locations on a crystal and should make it easier to efficiently build nanoscale devices "from the bottom up," atom by atom.

The NIST team was surprised to find that the atoms emitted a characteristic electronic "noise" as they moved between two different types of bonding sites on the crystal surface. By converting this electronic signal into an audio signal, the researchers were able to "hear" the switching take place. The sound resembles a hip hop musician’s rhythmic "scratching" and can be used by researchers to know in real time that atoms have moved into desired positions.



Several research groups already are using specialized microscopes to build simple structures by moving atoms one at a time. The NIST advance makes it easier to reliably position atoms in very specific locations. "What we did to the atom is something like lubricating a ball bearing so that less force is required to move it," says Joseph Stroscio, co-author of the Science paper.

Such basic nanoscale construction tools will be essential for computer-controlled assembly of more complex atomic-scale structures and devices. These devices will operate using quantum physics principles that only occur at the atomic scale, or may be the ultimate miniaturization of a conventional device, such as an "atomic switch" where the motion of a single atom can turn electrical signals on and off.

The research involved using a custom-built, cryogenic scanning tunneling microscope (STM) to move a cobalt atom around on a bed of copper atoms that are closely packed in a lattice pattern. In a typical STM, a needle-like tip is scanned over an electrically conducting surface and changes in current between the tip and the surface are used to make three-dimensional images of the surface topography. The tip can be brought closer to the surface to push or pull the cobalt atom.

In the research described in Science, NIST scientists discovered that the cobalt atom responds to both the STM tip and the copper surface, and that the atom "hops" back and forth between nearby bonding sites instead of gliding smoothly. With slight increases in the current flowing through the tip to the atom, the researchers were able to make the cobalt atom heat up and vibrate and weaken the cobalt-copper bonds. This induced the cobalt atom to hop between the two types of lattice sites, with the rate of transfer controlled by the amount of current flowing.

The NIST researchers also found that they could use the STM tip to reshape the energy environment around the cobalt atom. This allows control over the amount of time the cobalt atom spends in one of the lattice sites. Using this technique the researchers found they can even trap the cobalt atom in a lattice site that the atom normally avoids. Sounds of the "protesting" atom give rise to the "hip hop" scratching sound described in Science. "The impact of the work is twofold," says Stroscio. "We learned about the basic physics involved in atom manipulation, which will help us build future atomic-scale nanostructures and devices. We also learned that we can control the switching of a single atom, which has potential for controlling electrical activity in those devices."

The experiments represent initial steps in exploring a new system of measurement, atom-based metrology, in which single atoms are used as nanoscale probes to collect information about their environment. In particular, the NIST-built instrument can be used to draw detailed maps of binding sites on a metal surface that cannot be made with standard STM measurements.

The new results are among the earliest to be published based on work performed at NIST’s nanoscale physics facility, where scientists are using a computer-controlled STM to autonomously manipulate and control individual atoms, with the intent to build useful devices and nanostructures.

Laura Ost | EurekAlert!
Further information:
http://physics.nist.gov/Divisions/Div841/Gp3/Facilities/nano_phy.html
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>