Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK scientists detect new ring and one, possibly two, objects at Saturn

09.09.2004


The joint NASA/ESA/ASI Cassini-Huygens mission is continuing to provide a fascinating insight into the Saturn system. The latest detection of one small body, possibly two, orbiting in the planet’s contorted F ring region and a ring of new material associated with Saturn’s moon Atlas, has been made by a team of UK scientists.



A small object was discovered moving near the outside edge of the F ring, interior to the orbit of Saturn’s moon Pandora. The object was first seen by Professor Carl Murray, imaging team member at Queen Mary, University of London, in images taken on June 21, 2004, just days before Cassini arrived at Saturn. “I noticed this barely detectable object skirting the outer part of the F ring. It was an incredible privilege to be the first person to spot it.” Murray’s group at Queen Mary was the first to calculate an orbit for the object.

Scientists cannot yet definitively say if the object is a moon or a temporary ‘clump’. If it is a moon, its diameter is estimated at four to five kilometres (two to three miles) and it is located 1,000 kilometres (620 miles) from the F ring, Saturn’s outmost ring. It is at a distance of approximately 141,000 kilometres (86,000 miles) from the centre of Saturn and within 300 kilometres (190 miles) of the orbit of the moon Pandora. The object has been provisionally named S/2004 S3.


Scientists are not sure if the new object is alone. This is because a search through other images that might capture the new object to pin down its orbit by Dr. Joseph Spitale, a planetary scientist working with team leader Dr. Carolyn Porco at the Space Science Institute in Boulder, Colorado, revealed something strange. “When I went to look for additional images of this object to refine its orbit, I found that about five hours after first being sighted, it seemed to be orbiting interior to the F ring,” said Spitale. “If this is the same object then it has an orbit that crosses the F ring, which makes it a strange object.” Because of the puzzling dynamical implications of having a body which crosses the ring, the inner object sighted by Spitale is presently considered a separate object with the temporary designation S/2004 S 4.

In the process of examining the F ring region, Murray also detected a previously unknown ring, S/2004 1R, associated with Saturn’s moon, Atlas. “We knew from Voyager that the region between the main rings and the F ring was dusty but the role of the moons in this region was a mystery,” said Murray. “It was while studying the F ring in these images that I discovered the faint ring of material. My immediate hunch was that it might be associated with the orbit of one of Saturn’s moons and after some calculation I identified Atlas as the prime suspect.”

The ring is located 138,000 kilometres (86,000 miles) from the centre of Saturn in the orbit of the moon Atlas, between the A ring and the F ring. The width of the ring is estimated at 300 kilometres (190 miles). The ring was first spotted in images taken after orbit insertion on July 1, 2004. There is no way of knowing yet if it extends all the way around the planet.

“We have planned many images to search the region between the A and F rings for diffuse material and new moons, which we have long expected to be there on the basis of the peculiar behaviour of the F ring,” said Porco. “Now we have found something but, as is usual for the F ring, what we see is perplexing.”

Searches will continue for further detections of the new body or bodies seen in association with the F ring. If the two objects indeed turn out to be a single moon, it will bring the Saturn moon count to 34. The new ring adds to the growing number of narrow ringlets in orbit around Saturn. If confirmed as a moon then this will be the first UK detection of a moon since Melotte’s discovery of the outer jovian moon Pasiphae in 1908.

UK scientists are heavily involved in the mission through building instruments for both Cassini (six instruments) and Huygens (two instruments). They are also involved in operating the instruments and analyzing results.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>