Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK scientist gambles on gravitational waves

09.09.2004


At the Institute of Physics conference Photon 04 yesterday, Professor Jim Hough, one of the UK’s leading scientists, revealed that he thinks high street bookmakers are crazy to be offering odds of 100-1 on whether Gravitational Waves (wrinkles in relativity) will be discovered before 2010. He has placed a personal bet of £25 – the maximum Ladbrokes allowed him to stake. The available odds were quickly cut from an initial offering of 500-1.



Professor Jim Hough, from the University of Glasgow and one of the leaders of the UK search for Gravitational Waves, said: "I think the real odds are more like a favourite at 2-1 or 3-1, I’m almost certain we’ll discover them in the very near future. I would have had much more money on at the odds they were offering but the maximum bet they allowed me to have was £25!" Gravitational waves are ripples in the fabric of spacetime and are one of the more exotic predictions of Einstein’s theory of gravity – General Relativity. Initially thought not to exist, the reality of gravitational waves is no longer doubted by scientists. The gradual changes in the orbit of a binary pulsar called PSR 1913 +16 (a pair of orbiting neutron stars, one of which is a pulsar emitting precisely timed radio pulses) can be explained only if angular momentum and energy is carried away from this system by gravitational waves.

Weak gravitational waves are probably passing through us all the time but are too faint to detect. Scientists are currently trying to detect the strongest waves, for example those created in violent events such as supernovae but none of the instruments looking for them have yet picked up a clear and definite signal. Improvements in the sensitivity of these instruments, and some promising initial results, should mean that scientists are very close.


There are currently four teams working to try and detect them – two in the US, a UK/German team with an interferometer based in Germany, a France/Italy collaboration in Pisa, and a smaller 300 metre instrument in Japan.

The US experiment, based in Hanover and called LIGO, is the largest at 4km. The UK device, called GEO 600, is much smaller at only 600 metres long. "We couldn’t afford to build an instrument as big as LIGO so we had to be innovative to compete" said Professor Hough. "We built a slightly more experimental instrument with two unique features – silica fibre wires and a new way of processing the signal. We use silica fibre wires to suspend the mirrors, rather than steel. Silica creates a purer resonance – like the perfect note you get when you tap a good quality wine glass – and this means it’s a lot more sensitive." "We also put an extra mirror in the output channel which forces the photons back into the system where they are processed for longer. This enhances any signal from a gravitational wave that might be present. GEO’s been so successful that LIGO intend to implement some of our improvements in their instrument when they’re next refitted."

Looking to the future, he said "Even if gravitational waves are not detected in the next few years, I think we’re certain to find them in or around 2010 when LIGO is upgraded. The odds Ladbrokes are offering are bound to keep falling and falling!"

Professor Jim Hough delivered the plenary lecture "Wrinkles in Relativity – the search for Gravitational Waves" at Photon 04 at 9am on Wednesday 8th September 2004.

David Reid | EurekAlert!
Further information:
http://www.iop.org
http://www.photon04.org
http://www.physics.gla.ac.uk/gwg/

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>