Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UK scientist gambles on gravitational waves


At the Institute of Physics conference Photon 04 yesterday, Professor Jim Hough, one of the UK’s leading scientists, revealed that he thinks high street bookmakers are crazy to be offering odds of 100-1 on whether Gravitational Waves (wrinkles in relativity) will be discovered before 2010. He has placed a personal bet of £25 – the maximum Ladbrokes allowed him to stake. The available odds were quickly cut from an initial offering of 500-1.

Professor Jim Hough, from the University of Glasgow and one of the leaders of the UK search for Gravitational Waves, said: "I think the real odds are more like a favourite at 2-1 or 3-1, I’m almost certain we’ll discover them in the very near future. I would have had much more money on at the odds they were offering but the maximum bet they allowed me to have was £25!" Gravitational waves are ripples in the fabric of spacetime and are one of the more exotic predictions of Einstein’s theory of gravity – General Relativity. Initially thought not to exist, the reality of gravitational waves is no longer doubted by scientists. The gradual changes in the orbit of a binary pulsar called PSR 1913 +16 (a pair of orbiting neutron stars, one of which is a pulsar emitting precisely timed radio pulses) can be explained only if angular momentum and energy is carried away from this system by gravitational waves.

Weak gravitational waves are probably passing through us all the time but are too faint to detect. Scientists are currently trying to detect the strongest waves, for example those created in violent events such as supernovae but none of the instruments looking for them have yet picked up a clear and definite signal. Improvements in the sensitivity of these instruments, and some promising initial results, should mean that scientists are very close.

There are currently four teams working to try and detect them – two in the US, a UK/German team with an interferometer based in Germany, a France/Italy collaboration in Pisa, and a smaller 300 metre instrument in Japan.

The US experiment, based in Hanover and called LIGO, is the largest at 4km. The UK device, called GEO 600, is much smaller at only 600 metres long. "We couldn’t afford to build an instrument as big as LIGO so we had to be innovative to compete" said Professor Hough. "We built a slightly more experimental instrument with two unique features – silica fibre wires and a new way of processing the signal. We use silica fibre wires to suspend the mirrors, rather than steel. Silica creates a purer resonance – like the perfect note you get when you tap a good quality wine glass – and this means it’s a lot more sensitive." "We also put an extra mirror in the output channel which forces the photons back into the system where they are processed for longer. This enhances any signal from a gravitational wave that might be present. GEO’s been so successful that LIGO intend to implement some of our improvements in their instrument when they’re next refitted."

Looking to the future, he said "Even if gravitational waves are not detected in the next few years, I think we’re certain to find them in or around 2010 when LIGO is upgraded. The odds Ladbrokes are offering are bound to keep falling and falling!"

Professor Jim Hough delivered the plenary lecture "Wrinkles in Relativity – the search for Gravitational Waves" at Photon 04 at 9am on Wednesday 8th September 2004.

David Reid | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>