Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sun’s X-file under the Spotlight

03.09.2004


One of the Sun’s greatest mysteries is about to be unravelled by UK solar astrophysicists hosting a major international workshop at the University of St Andrews from September 6-9th 2004. For years scientists have been baffled by the ’coronal heating problem’: why it is that the light surface of the Sun (and all other solar-like stars) has a temperature of about 6000 degrees Celsius, yet the corona (the crown of light we see around the moon at a total eclipse) is at a temperature of two million degrees?



Understanding our nearest star is important because its behaviour has such an immense impact on our planet. This star provides all the light, heat and energy required for life on Earth and yet there is still much about the Sun that is shrouded in mystery.

"The problem is like an Astrophysics X-file! It is totally counter intuitive that the Sun’s temperature should rise as you move away from the hot surface," explains Dr Robert Walsh of the University of Central Lancashire and co-organiser of the workshop. "It is like walking away from a fire and suddenly hitting a hotspot, thousands of times hotter than the fire itself."


Using the joint ESA/NASA satellite, the Solar and Heliospheric Observatory (SOHO), along with another NASA mission called TRACE, researchers have gathered enough data to form two rival theories to explain what has been termed ’coronal heating’. It is now believed that the Sun’s strong magnetic field is the culprit behind this unique phenomenon. At this SOHO workshop, scientists from the UK and around the world will look at the evidence for these two explanations and try to untangle the clues we now have available to us.

Walsh continues, "SOHO’s contribution to the research has been so important because for the first time we can take simultaneous magnetic and extreme ultraviolet images of the Sun’s atmosphere, allowing us to study the changes in the magnetic field at the same time as the corresponding effect in the corona. Then, using sophisticated computer simulations, we have constructed 3d models of the coronal magnetic field that can be compared with SOHO’s observations."

One possible mechanism for coronal heating is called ’wave heating’. Prof Alan Hood from the Solar and Magnetospheric Theory Group at St. Andrews explains: "The Sun has a very strong magnetic field which can carry waves upwards from the bubbling solar surface. Then these waves dump their energy in the corona, like ordinary ocean waves crashing on a beach. The energy of the wave has to go somewhere and in the corona it heats the electrified gases to incredible temperatures."

The other rival mechanism is dependent on twisting the Sun’s magnetic field beyond breaking point. Prof Richard Harrison of the UK’s Rutherford Appleton Laboratory says "The Sun’s magnetic field has loops, known to be involved in the processes of sun spots and solar flares. These loops reach out into the Sun’s corona and can become twisted. Like a rubber band, they can become so twisted that eventually they snap. When that happens, they release their energy explosively, heating the coronal gases very rapidly".

The Sun is the only star astronomers can study in close detail and many questions remain. The workshop will also look forwards to future missions such as Solar-B, STEREO and Solar Orbiter that all have important UK involvement through PPARC.

Julia Maddock | EurekAlert!
Further information:
http://www.pparc.ac.uk
http://www.pparc.ac.uk/Nw/Md/Artcl/soho15_images.asp
http://sohowww.nascom.nasa.gov

More articles from Physics and Astronomy:

nachricht Donuts, math, and superdense teleportation of quantum information
29.05.2015 | University of Illinois College of Engineering

nachricht Physicists precisely measure interaction between atoms and carbon surfaces
29.05.2015 | University of Washington

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>