Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sun’s X-file under the Spotlight

03.09.2004


One of the Sun’s greatest mysteries is about to be unravelled by UK solar astrophysicists hosting a major international workshop at the University of St Andrews from September 6-9th 2004. For years scientists have been baffled by the ’coronal heating problem’: why it is that the light surface of the Sun (and all other solar-like stars) has a temperature of about 6000 degrees Celsius, yet the corona (the crown of light we see around the moon at a total eclipse) is at a temperature of two million degrees?



Understanding our nearest star is important because its behaviour has such an immense impact on our planet. This star provides all the light, heat and energy required for life on Earth and yet there is still much about the Sun that is shrouded in mystery.

"The problem is like an Astrophysics X-file! It is totally counter intuitive that the Sun’s temperature should rise as you move away from the hot surface," explains Dr Robert Walsh of the University of Central Lancashire and co-organiser of the workshop. "It is like walking away from a fire and suddenly hitting a hotspot, thousands of times hotter than the fire itself."


Using the joint ESA/NASA satellite, the Solar and Heliospheric Observatory (SOHO), along with another NASA mission called TRACE, researchers have gathered enough data to form two rival theories to explain what has been termed ’coronal heating’. It is now believed that the Sun’s strong magnetic field is the culprit behind this unique phenomenon. At this SOHO workshop, scientists from the UK and around the world will look at the evidence for these two explanations and try to untangle the clues we now have available to us.

Walsh continues, "SOHO’s contribution to the research has been so important because for the first time we can take simultaneous magnetic and extreme ultraviolet images of the Sun’s atmosphere, allowing us to study the changes in the magnetic field at the same time as the corresponding effect in the corona. Then, using sophisticated computer simulations, we have constructed 3d models of the coronal magnetic field that can be compared with SOHO’s observations."

One possible mechanism for coronal heating is called ’wave heating’. Prof Alan Hood from the Solar and Magnetospheric Theory Group at St. Andrews explains: "The Sun has a very strong magnetic field which can carry waves upwards from the bubbling solar surface. Then these waves dump their energy in the corona, like ordinary ocean waves crashing on a beach. The energy of the wave has to go somewhere and in the corona it heats the electrified gases to incredible temperatures."

The other rival mechanism is dependent on twisting the Sun’s magnetic field beyond breaking point. Prof Richard Harrison of the UK’s Rutherford Appleton Laboratory says "The Sun’s magnetic field has loops, known to be involved in the processes of sun spots and solar flares. These loops reach out into the Sun’s corona and can become twisted. Like a rubber band, they can become so twisted that eventually they snap. When that happens, they release their energy explosively, heating the coronal gases very rapidly".

The Sun is the only star astronomers can study in close detail and many questions remain. The workshop will also look forwards to future missions such as Solar-B, STEREO and Solar Orbiter that all have important UK involvement through PPARC.

Julia Maddock | EurekAlert!
Further information:
http://www.pparc.ac.uk
http://www.pparc.ac.uk/Nw/Md/Artcl/soho15_images.asp
http://sohowww.nascom.nasa.gov

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>