Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Grid becomes a reality

03.09.2004


This week, UK particle physicists have demonstrated the world’s largest, working computing Grid. With over 6,000 computers at 78 sites internationally, the Large Hadron Collider Computing Grid (LCG) is the first permanent, worldwide Grid for doing real science. The UK is a major part of LCG, providing more than 1,000 computers in 12 sites. At the 2004 UK e-Science All Hands Meeting in Nottingham, particle physicists representing a collaboration of 20 UK institutions will explain to biologists, chemists and computer scientists how they reached this milestone.



Particle physics experiments at the Large Hadron Collider (LHC), currently under construction at CERN in Geneva will produce around 15 Petabytes of data each year - 15 million, billion bytes. To deal with this vast volume of data, particle physicists worldwide have been building a computing Grid. By 2007, this Grid will have the equivalent of 100,000 of today’s fastest computers working together to produce a ’virtual supercomputer’, which can be expanded and developed as needed. When the LHC experiments start in 2007, they are expected to reveal new physics processes that were crucial in building the Universe we see today, and shed light on mysteries such as the origin of mass.

Grid computing has been a target for IT developers and scientists for more than five years. It allows scientists to access computer power and data from around the world seamlessly, without needing to know where the computers are. Analysis for particle physics can also be done on conventional supercomputers, but these are expensive and in high demand. Grid computing, in contrast, is constructed from thousands of cheap units that can be increased to meet users’ needs. Like the web before it, the Grid has the potential to impact on everyone’s computing.


GridPP, the UK’s particle physics Grid project, was set up by the Particle Physics and Astronomy Research Council in 2000. On 1 September this year the project reaches its halfway point, with the official end of its first phase and the start of GridPP2. According to Dr Dave Britton, the GridPP project manager, "The first half of the project aimed to create a prototype Grid - which we’ve done very successfully. Having proved that a Grid can work, we’re now focussed on developing a large-scale stable, easy-to-use Grid integrated with other international projects. This will let scientists tackle problems that are much larger than those possible today."

Dr Jeremy Coles of Rutherford Appleton Laboratory is the GridPP production manager, responsible for making sure the Grid works on a day-to-day basis. He is giving the main GridPP talk in Nottingham, and stresses, "There are a lot of challenges in front of us as we expand our production Grid. In addition to the technical problems involved in providing a well-monitored, stable Grid, we need to address wider issues, in particular encouraging an open sharing of resources between groups of users."

In Nottingham, conference delegates will be able to see how the particle physics Grid works. GridPP has developed a map that shows computing jobs moving around LCG in real time, as they are distributed to the most suitable sites on the Grid, run their programmes and then return their results home. The map can be seen at http://www.hep.ph.ic.ac.uk/e-science/projects/demo/index.html Dr Dave Colling, from Imperial College, London, whose team built the map, said, "It can be difficult for people who have never seen a Grid working to imagine what it does. Our map is an easy way to see how a Grid can let scientists use resources all over the world, from their desktop. It’s also useful for experts, who can easily see how well the Grid’s working."

Professor Tony Doyle, leader of GridPP, explained, "This is a great achievement for particle physics and for e-Science. We now have a true international working Grid, running more than 5,000 computing jobs at a time. Our next aim is to scale up the computing power available by a factor of ten, so that we’ll have 10,000 computers in the UK alone, ready for the Large Hadron Collider in 2007"

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk
http://www.hep.ph.ic.ac.uk/e-science/projects/demo/index.html
http://www.pparc.ac.uk/Nw/grid_reality.asp

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>