Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny meteorite grains help settle an astronomical debate


"These tiny relics, a millionth of a meter small, could point us to the first steps of dust formation in both old and young stars," stated Dr. Larry Nittler of the Carnegie Institution’s Department of Terrestrial Magnetism. Nittler is co-author of a study published in the September 3, 2004, issue of Science,* about the origin of two presolar grains from the Tieschitz meteorite and the implications they have for resolving observational and theoretical challenges of dusty outflows surrounding asymptotic giant branch (AGB) stars--one of the last evolutionary stages of low-mass stars like the Sun.

Both theoreticians and observational astronomers have long grappled with the issue of whether aluminum oxide--which in its crystalline form is the second hardest natural material--is the first solid to condense as hot, gaseous winds from oxygen-rich AGB stars expand and cool. "Because AGB stars are the most significant source of dust in the Milky Way galaxy, determining how and in what form this dust condenses is important to understanding how the chemical elements get cycled between stars and interstellar space. Also, the first solids in cooling disks around new stars form by analogous processes to those occurring around AGB stars, so these grains give us a glimpse into the earliest stages of our own solar system formation," said Nittler.

Observational astronomers have obtained telltale infrared spectra from dusty AGB stars that have indicated the possible presence of two forms of aluminum oxide--the crystalline form and an amorphous, or non crystalline form. However, the data have not been precise enough to tell if both forms are really present. "This study is really the first definitive analysis that indicates that both forms are indeed produced in AGB stars," said Professor Tom Bernatowicz of Washington University in St. Louis.

The authors analyzed the ratios of oxygen and magnesium isotopes in the grains in addition to their microstructures and chemical compositions. Different isotopes of the same element are affected to differing degrees by the nuclear reactions that power stars. The isotopic analysis indicated that the grains originated in AGB stars and did not undergo further processing as they made their way through time ultimately to become part of the dusty cloud from which the solar system formed 4.6 billion years ago. However, their structures are very different, as are their chemical compositions. One is a single-crystal of the most common form of aluminum oxide--called corundum--while the other does not exhibit a crystalline structure. The corundum grain has small, but measurable, amounts of titanium impurities as well. The evidence clarifies observations suggesting that the two different forms of aluminum oxide are made in AGB outflows. It is also vital to the refinement of condensation modeling and the understanding of how dust originates in the universe.

Dr. Larry Nittler | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>