Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny meteorite grains help settle an astronomical debate

03.09.2004


"These tiny relics, a millionth of a meter small, could point us to the first steps of dust formation in both old and young stars," stated Dr. Larry Nittler of the Carnegie Institution’s Department of Terrestrial Magnetism. Nittler is co-author of a study published in the September 3, 2004, issue of Science,* about the origin of two presolar grains from the Tieschitz meteorite and the implications they have for resolving observational and theoretical challenges of dusty outflows surrounding asymptotic giant branch (AGB) stars--one of the last evolutionary stages of low-mass stars like the Sun.



Both theoreticians and observational astronomers have long grappled with the issue of whether aluminum oxide--which in its crystalline form is the second hardest natural material--is the first solid to condense as hot, gaseous winds from oxygen-rich AGB stars expand and cool. "Because AGB stars are the most significant source of dust in the Milky Way galaxy, determining how and in what form this dust condenses is important to understanding how the chemical elements get cycled between stars and interstellar space. Also, the first solids in cooling disks around new stars form by analogous processes to those occurring around AGB stars, so these grains give us a glimpse into the earliest stages of our own solar system formation," said Nittler.

Observational astronomers have obtained telltale infrared spectra from dusty AGB stars that have indicated the possible presence of two forms of aluminum oxide--the crystalline form and an amorphous, or non crystalline form. However, the data have not been precise enough to tell if both forms are really present. "This study is really the first definitive analysis that indicates that both forms are indeed produced in AGB stars," said Professor Tom Bernatowicz of Washington University in St. Louis.


The authors analyzed the ratios of oxygen and magnesium isotopes in the grains in addition to their microstructures and chemical compositions. Different isotopes of the same element are affected to differing degrees by the nuclear reactions that power stars. The isotopic analysis indicated that the grains originated in AGB stars and did not undergo further processing as they made their way through time ultimately to become part of the dusty cloud from which the solar system formed 4.6 billion years ago. However, their structures are very different, as are their chemical compositions. One is a single-crystal of the most common form of aluminum oxide--called corundum--while the other does not exhibit a crystalline structure. The corundum grain has small, but measurable, amounts of titanium impurities as well. The evidence clarifies observations suggesting that the two different forms of aluminum oxide are made in AGB outflows. It is also vital to the refinement of condensation modeling and the understanding of how dust originates in the universe.

Dr. Larry Nittler | EurekAlert!
Further information:
http://www.ciw.edu
http://www.CarnegieInstitution.org

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>