Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ET, don’t phone home; drop a line instead

02.09.2004


Were E.T. really interested in getting in touch with home, he might be better off writing than phoning, according to Christopher Rose, professor of electrical and computer engineering at Rutgers, The State University of New Jersey.



Rose contends that inscribing information and physically sending it to some location in deep space is more energy-efficient than pulsing it out on radio waves, which disperse as they travel.

"Think of a flashlight beam," Rose says. "Its intensity decreases as it gets farther from its source. The same is true of the beam of a laser pointer, though the distance is much longer. The unavoidable fact is that waves, both light and radio, disperse over distance, and over great distance, they disperse a lot."


Rose and Gregory Wright, a physicist, are co-authors of a paper titled, "Inscribed matter as an energy-efficient means of communication with an extraterrestrial civilization," which appears on the cover of the September issue of Nature. The paper grew out of Rose’s work at the Wireless Information Network Laboratory (WINLAB) at Rutgers’ School of Engineering. "Our original question was, ’How do you get the most bits per second over a wireless channel?’" Rose says. This led him to consider distance, and the "energy budget" required for sending a signal. The budget increases with distance, Rose contends, and the detectability of the signal diminishes. The less detectable a message is, the lower its speed.

In addition, Rose says, when waves pass a particular point, they’ve passed it for good. Potential recipients at that point might be unable to snag a passing message for any one of many reasons. They might not be listening. They might be extinct. So someone sending such a message would have to send it over and over to increase the chance of its being received. The energy budget goes up accordingly. A physical message, however, stays where it lands.

Rose is in favor of listening for that close encounter, but he thinks researchers should have their eyes open, too. Rose speculates that "messages" might be anything from actual text in a real language to (more likely) organic material embedded in an asteroid – or in the crater made by such an asteroid upon striking Earth. Messages – and Rose suggests there might be many of them, perhaps millions – might literally be at our feet. They might be awaiting our discovery on the moon, or on one of Jupiter’s moons. They might be dramatic or mundane. A bottle floating in the ocean is just a bottle floating in the ocean – unless, upon closer inspection, it turns out to have a message in it.

Rose concedes that this idea may be hard to accept, but this difficulty arises from our concern about time. If the sender isn’t concerned about reaching the recipient and getting an answer in his own lifetime, inscribing and sending is the way to go.

"If haste is unimportant, sending messages inscribed on some material can be strikingly more efficient than communicating by electromagnetic waves," Rose says.

Of course, E.T.’s choice of medium might be affected by how much he had to say. "Since messages require protection from cosmic radiation, and small messages might be difficult to find amid the clutter near a recipient, ’inscribed matter’ is most effective for long, archival messages, as opposed to potentially short ’we exist’ announcements," Rose says.

Ken Branson | EurekAlert!
Further information:
http://www.ur.rutgers.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>