Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ET, don’t phone home; drop a line instead

02.09.2004


Were E.T. really interested in getting in touch with home, he might be better off writing than phoning, according to Christopher Rose, professor of electrical and computer engineering at Rutgers, The State University of New Jersey.



Rose contends that inscribing information and physically sending it to some location in deep space is more energy-efficient than pulsing it out on radio waves, which disperse as they travel.

"Think of a flashlight beam," Rose says. "Its intensity decreases as it gets farther from its source. The same is true of the beam of a laser pointer, though the distance is much longer. The unavoidable fact is that waves, both light and radio, disperse over distance, and over great distance, they disperse a lot."


Rose and Gregory Wright, a physicist, are co-authors of a paper titled, "Inscribed matter as an energy-efficient means of communication with an extraterrestrial civilization," which appears on the cover of the September issue of Nature. The paper grew out of Rose’s work at the Wireless Information Network Laboratory (WINLAB) at Rutgers’ School of Engineering. "Our original question was, ’How do you get the most bits per second over a wireless channel?’" Rose says. This led him to consider distance, and the "energy budget" required for sending a signal. The budget increases with distance, Rose contends, and the detectability of the signal diminishes. The less detectable a message is, the lower its speed.

In addition, Rose says, when waves pass a particular point, they’ve passed it for good. Potential recipients at that point might be unable to snag a passing message for any one of many reasons. They might not be listening. They might be extinct. So someone sending such a message would have to send it over and over to increase the chance of its being received. The energy budget goes up accordingly. A physical message, however, stays where it lands.

Rose is in favor of listening for that close encounter, but he thinks researchers should have their eyes open, too. Rose speculates that "messages" might be anything from actual text in a real language to (more likely) organic material embedded in an asteroid – or in the crater made by such an asteroid upon striking Earth. Messages – and Rose suggests there might be many of them, perhaps millions – might literally be at our feet. They might be awaiting our discovery on the moon, or on one of Jupiter’s moons. They might be dramatic or mundane. A bottle floating in the ocean is just a bottle floating in the ocean – unless, upon closer inspection, it turns out to have a message in it.

Rose concedes that this idea may be hard to accept, but this difficulty arises from our concern about time. If the sender isn’t concerned about reaching the recipient and getting an answer in his own lifetime, inscribing and sending is the way to go.

"If haste is unimportant, sending messages inscribed on some material can be strikingly more efficient than communicating by electromagnetic waves," Rose says.

Of course, E.T.’s choice of medium might be affected by how much he had to say. "Since messages require protection from cosmic radiation, and small messages might be difficult to find amid the clutter near a recipient, ’inscribed matter’ is most effective for long, archival messages, as opposed to potentially short ’we exist’ announcements," Rose says.

Ken Branson | EurekAlert!
Further information:
http://www.ur.rutgers.edu

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>