Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equations against hypothermia

01.09.2004


Sharks are, by tradition, the eternal threat facing divers. Yet, a diver is quite a lot more unlikely to meet such a creature under the water than, at some time or another, to come up against an even greater danger – hypothermia, or exposure. To enable divers to prevent this syndrome from creeping silently up on them, two researchers from the Area of Applied Physics at the University Jaume I (Spain) have formulated an equation that enables divers to calculate the time they can safely remain submerged in the water at a certain temperature before the onset of exposure.



Taking into account parameters such as the initial body temperature, the rate at which body heat is produced, the temperature of the water and the thickness of the diving suit, among others, the formula provides an estimated value for the amount of time it will take the diver to reach a level of heat loss that is critical for his or her survival. If the mean temperature of the human body is 37 ºC, exposure comes about when the temperature drops below 35 ºC, and collapse and death can occur when it reaches 30 ºC.

“The exchange of energy between the diver and the water is less relevant when we are dealing with the physics of scuba diving because the limited supply of air in the bottles means that dives usually last less than an hour. It is, however, important in breath-hold or apnea diving, where divers are often underwater for over three hours,” explains Marcelo Aguilella Arzo, one of the authors, in a paper published in the American Journal of Physics.


Water makes the body temperature drop up to 26 times faster than air at the same temperature. Thus, according to the equation developed by the researchers at the University Jaume I, without the protection afforded by a suit a diver submerged in water at 15 ºC will be able to remain underwater less than an hour before beginning to feel the effects of exposure. On the other hand, if the diver is wearing a 3-millimetre thick neoprene suit this figure rises to four hours.

Hugo Cerdà | alfa
Further information:
http://www.uji.es

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>