# Forum for Science, Industry and Business

Search our Site:

## Equations against hypothermia

01.09.2004

Sharks are, by tradition, the eternal threat facing divers. Yet, a diver is quite a lot more unlikely to meet such a creature under the water than, at some time or another, to come up against an even greater danger – hypothermia, or exposure. To enable divers to prevent this syndrome from creeping silently up on them, two researchers from the Area of Applied Physics at the University Jaume I (Spain) have formulated an equation that enables divers to calculate the time they can safely remain submerged in the water at a certain temperature before the onset of exposure.

Taking into account parameters such as the initial body temperature, the rate at which body heat is produced, the temperature of the water and the thickness of the diving suit, among others, the formula provides an estimated value for the amount of time it will take the diver to reach a level of heat loss that is critical for his or her survival. If the mean temperature of the human body is 37 ºC, exposure comes about when the temperature drops below 35 ºC, and collapse and death can occur when it reaches 30 ºC.

“The exchange of energy between the diver and the water is less relevant when we are dealing with the physics of scuba diving because the limited supply of air in the bottles means that dives usually last less than an hour. It is, however, important in breath-hold or apnea diving, where divers are often underwater for over three hours,” explains Marcelo Aguilella Arzo, one of the authors, in a paper published in the American Journal of Physics.

Water makes the body temperature drop up to 26 times faster than air at the same temperature. Thus, according to the equation developed by the researchers at the University Jaume I, without the protection afforded by a suit a diver submerged in water at 15 ºC will be able to remain underwater less than an hour before beginning to feel the effects of exposure. On the other hand, if the diver is wearing a 3-millimetre thick neoprene suit this figure rises to four hours.

Hugo Cerdà | alfa
Further information:
http://www.uji.es

### More articles from Physics and Astronomy:

Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

New material for splitting water
19.06.2018 | American Institute of Physics

### Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

### Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

### Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

### Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

### Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige