Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Periodic Dimming Of Bright Starlight Reveals Distant Planet

25.08.2004


Using a network of small telescopes and the "transit method" of detection, scientists have made their first direct discovery of a planet orbiting a bright star. A periodic dimming of light from a bright star 500 light-years away revealed the planet’s presence. The star’s intense light will allow scientists to explore the chemical makeup of the planet’s atmosphere in future observations. A paper on the recent discovery will appear on-line today in The Astrophysical Journal Letters.


Periodic dimming of bright starlight reveals distant planet. Credit: David A. Aguilar, Harvard-Smithsonian Center for Astrophysics



"This effort further develops the ’transit method’ and lays the groundwork for more research into the composition of the atmospheres surrounding planets outside our solar system," said Cliff Jacobs, program director in NSF’s division of atmospheric sciences, which funded the discovery. The research is co-funded by NASA. "In this age of mega-astronomical observing tools, it’s amazing that this discovery resulted from modest observing instruments."

This is the first extrasolar planet discovery made by a dedicated survey of thousands of relatively bright stars in large regions of the sky. It is also the first using the Trans-Atlantic Exoplanet Survey (TrES, pronounced "trace"), a network of small, relatively inexpensive telescopes designed to look specifically for planets orbiting bright stars. The telescopes make use of the transit technique, in which scientists analyze the shadow cast by a planet as it passes between its star and Earth.


The discovery team includes scientists from the Astrophysical Institute of the Canaries (IAC), National Center for Atmospheric Research (NCAR), Harvard-Smithsonian Center for Astrophysics (CfA), Lowell Observatory, and California Institute of Technology.

A team of scientists led by Timothy Brown (NCAR), David Charbonneau (CfA) and Edward Dunham (Lowell Observatory) developed the TrES network. Brown built the optical system of the telescope used in the discovery and located on Tenerife in the Canary Islands. Roi Alonso Sobrino of the IAC discovered the planet, called TrES-1, after three years of persistent planet hunting.

"The fact that we can learn anything at all about a planet 500 light-years away is astonishing," says Brown. "It’s almost paradoxical that, with the transit method, small telescopes are more efficient than the largest ones, in a time when astronomers are planning 100-meter telescopes," says Alonso.

Of the approximately 12,000 stars examined by the TrES survey, Alonso identified 16 possible candidates for planet transits. "The TrES survey gave us our initial lineup of suspects. Then, we made follow-up observations to eliminate the imposters," says co-author Alessandro Sozzetti (CfA/University of Pittsburgh).

Within two months, the team had zeroed in on the most promising candidate. Observations by Torres and Sozzetti using the 10-meter-diameter Keck I telescope in Hawaii clinched the case. "Without this follow-up work the photometric [brightness] surveys can’t tell which of their candidates are actually planets. The proof in the pudding is a spectroscopic orbit [using the Doppler method] for the parent star. That’s why the Keck observations of this star were so important in proving that we had found a true planetary system," says co-author David Latham (CfA).

Only now has the transit method resulted in a discovery involving a Jupiter-size planet circling a bright star. The success of the transit method opens the possibility of directly determining key information about the planet, such as its mass and radius (size), and its atmospheric components.

Cheryl Dybas | NSF_News
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>