Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Absence of Stellar Pulsations Baffles Astronomers

23.08.2004


Readings done by a Canadian-Austrian team present a puzzle for astronomers. Expected surface phenomena, which provide information about stellar structures, could not be evidenced from readings obtained by means of a Canadian microsatellite. The precise satellite readings leave no doubt on the data published in NATURE. The project, organised in co-operation with the Institute of Astronomy at the University of Vienna and supported by the Austrian Science Fund (FWF), challenges the existing understanding of the structure of stars.

The phenomenon of pressure-driven oscillations at the surface of the sun has been known for more than 25 years. Astronomers use these pulsations to gain knowledge on the structure of the sun. Prof. Werner W. Weiss and his team from the Institute for Astronomy at the University of Vienna together with a Canadian team could for the first time conduct such observations on another star using a Canadian microsatellite. But contrary to all findings of terrestrial studies and previous calculations, there is no evidence for the surface pulsations.

"Good Vibrations" of the Stars



Prof. Weiss illustrates the astronomers’ interest in the surface pulsations thus: "It sounds paradoxical, but the surface pulsations provide us with knowledge of stellar structures. Just as seismology explores the interior of the earth by measuring quakes, the new discipline known as asteroseismology analyses the surface pulsations of stars to study their structures." One uses oscillations caused by these pulsations that move to the stellar core, where they are reflected and thrown back to the surface. The oscillations vary according to the nature of the surroundings and are measurable, thus providing indirect information about the interior of a star.

However, the surface pulsations cannot be directly measured. So the asteroseismologists measure the slight variations in the light intensity caused by these pulsations. The newest tool to be employed in this study is the Canadian microsatellite known as MOST (Microvariability and Oscillations of Stars) that is managed by Prof. Jaymie Matthews at the University of British Columbia, Canada. The satellite is situated 820 km above the earth and measures the light intensity of remote stars.

"The earth’s atmosphere is really cumbersome for measuring light. It works like a filter. MOST avoids this problem with a telescope that penetrates deep into space. Thus with a telescope of aperture 15 cm, we can achieve a higher precision in observation of a bright star than with an eight-metre telescope from earth," explains Prof. Weiss. The precision of the satellite telescope was actually confirmed by control surveys, which data was also received by a Viennese earth station, financed by the Austrian Space Agency and developed by the Vienna University of Technology.

Contradictory Findings = New Questions

The MOST’s first object for readings was Procyon, a star that lies in the constellation of Orion when viewed from the earth. Seven independent readings from the earth as well as theoretical calculations anticipated a minimum of 0.002% of oscillations of light intensity caused by pulsations, which was not a problem for MOST that can read oscillations up to 0.0003%. For all the precision, no significant surface oscillations could be determined for Procyon.

Prof. Weiss states: "This finding has interesting consequences for astronomy. It is possible that other gaseous movements, created by temperature differences at the surface of the star, cause an interfering signal that is superimposed on our readings. Then our data will be exceptionally valuable for future readings. It can also be that we must review our model calculations."

Astronomers would then be required to critically question the current knowledge about the inner structure of stars. The fact that even a budding specialist discipline such as asteroseismology challenges the foundation of a scientific area is a significant point for FWF. For it assuredly advances its adherence to creativity, quality and innovation as the most important criteria for funding.

Till C. Jelitto | alfa
Further information:
http://www.prd.at
http://www.astro.univie.ac.at
http://www.fwf.ac.at

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>