Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Absence of Stellar Pulsations Baffles Astronomers

23.08.2004


Readings done by a Canadian-Austrian team present a puzzle for astronomers. Expected surface phenomena, which provide information about stellar structures, could not be evidenced from readings obtained by means of a Canadian microsatellite. The precise satellite readings leave no doubt on the data published in NATURE. The project, organised in co-operation with the Institute of Astronomy at the University of Vienna and supported by the Austrian Science Fund (FWF), challenges the existing understanding of the structure of stars.

The phenomenon of pressure-driven oscillations at the surface of the sun has been known for more than 25 years. Astronomers use these pulsations to gain knowledge on the structure of the sun. Prof. Werner W. Weiss and his team from the Institute for Astronomy at the University of Vienna together with a Canadian team could for the first time conduct such observations on another star using a Canadian microsatellite. But contrary to all findings of terrestrial studies and previous calculations, there is no evidence for the surface pulsations.

"Good Vibrations" of the Stars



Prof. Weiss illustrates the astronomers’ interest in the surface pulsations thus: "It sounds paradoxical, but the surface pulsations provide us with knowledge of stellar structures. Just as seismology explores the interior of the earth by measuring quakes, the new discipline known as asteroseismology analyses the surface pulsations of stars to study their structures." One uses oscillations caused by these pulsations that move to the stellar core, where they are reflected and thrown back to the surface. The oscillations vary according to the nature of the surroundings and are measurable, thus providing indirect information about the interior of a star.

However, the surface pulsations cannot be directly measured. So the asteroseismologists measure the slight variations in the light intensity caused by these pulsations. The newest tool to be employed in this study is the Canadian microsatellite known as MOST (Microvariability and Oscillations of Stars) that is managed by Prof. Jaymie Matthews at the University of British Columbia, Canada. The satellite is situated 820 km above the earth and measures the light intensity of remote stars.

"The earth’s atmosphere is really cumbersome for measuring light. It works like a filter. MOST avoids this problem with a telescope that penetrates deep into space. Thus with a telescope of aperture 15 cm, we can achieve a higher precision in observation of a bright star than with an eight-metre telescope from earth," explains Prof. Weiss. The precision of the satellite telescope was actually confirmed by control surveys, which data was also received by a Viennese earth station, financed by the Austrian Space Agency and developed by the Vienna University of Technology.

Contradictory Findings = New Questions

The MOST’s first object for readings was Procyon, a star that lies in the constellation of Orion when viewed from the earth. Seven independent readings from the earth as well as theoretical calculations anticipated a minimum of 0.002% of oscillations of light intensity caused by pulsations, which was not a problem for MOST that can read oscillations up to 0.0003%. For all the precision, no significant surface oscillations could be determined for Procyon.

Prof. Weiss states: "This finding has interesting consequences for astronomy. It is possible that other gaseous movements, created by temperature differences at the surface of the star, cause an interfering signal that is superimposed on our readings. Then our data will be exceptionally valuable for future readings. It can also be that we must review our model calculations."

Astronomers would then be required to critically question the current knowledge about the inner structure of stars. The fact that even a budding specialist discipline such as asteroseismology challenges the foundation of a scientific area is a significant point for FWF. For it assuredly advances its adherence to creativity, quality and innovation as the most important criteria for funding.

Till C. Jelitto | alfa
Further information:
http://www.prd.at
http://www.astro.univie.ac.at
http://www.fwf.ac.at

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>