Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International Panel Recommends "Cold" Technology for Future Particle Accelerator

20.08.2004


The International Committee for Future Accelerators (ICFA), meeting during an international physics conference here, today (August 20) endorsed the recommendation of a panel of physicists charged to recommend the technology choice for a proposed future international particle accelerator.

The 12-member International Technology Recommendation Panel, chaired by Barry Barish of the California Institute of Technology, recommended that the world particle physics community adopt superconducting accelerating structures that operate at 2 Kelvin, rather than “X-band” accelerating structures operating at room temperature, as the technology choice for the internationally-federated design of a new electron-positron linear collider to operate at an energy between 0.5 and 1 TeV.

“Both the ‘warm’ X-band technology and the ‘cold’ superconducting technology would work for a linear collider,” the ITRP’s Barish said. “Each offers its own advantages, and each represents many years of R&D by teams of extremely talented and dedicated scientists and engineers. At this stage it would be too costly and time consuming to develop both technologies toward construction. The panel had our first meeting in January 2004 and started our evaluation of the two technologies. The decision was not an easy one, because both technologies were well advanced and we knew the selection would have significant consequences for the participating laboratories. On the basis of our assessment, we recommended that the linear collider design be based on the superconducting technology.”



George Kalmus, an ITRP member from the UK’s Rutherford Appleton Laboratory, explained the cold technology. “The superconducting technology uses L-band (1.3 GHz) radio frequency power for accelerating the electron and positron beams in the two opposing linear accelerators that make up the collider,” Kalmus said. “The notable feature of this machine is the use of pure niobium cavities for the accelerating structures of the collider. These cavities at their operating temperature have almost no electrical resistance; that is, they become superconducting. When this occurs, the transfer of power from the drive klystrons to the electron and positron beams becomes highly efficient. The proposed collider would occupy a tunnel of up to 40 km long with the experimental areas located at the midpoint, where the electrons and positrons collide.”

In accepting the ITRP recommendation today, Cornell University’s Maury Tigner, chair of the International Linear Collider Steering Committee, which appointed the panel, thanked them for their work. “A decade ago such a high-energy linear collider was just a dream—a vision for a revolutionary tool to answer some of the most fascinating and compelling questions about the nature of our universe,” Tigner said. “Since then the international science community has developed two different technologies, each capable of accelerating electrons and positrons to record energies: superconducting radiofrequency cavities and room-temperature radiofrequency disks. The ITRP’s decision was a difficult but necessary one. It opens the way for the world particle physics community to unite behind one technology and concentrate our combined resources on the design of a superconducting-technology linear collider.”

Jonathan Dorfan, chair of the International Committee for Future Accelerators, of which the ILCSC is a subcommittee, expressed appreciation to the panel on behalf of ICFA members. “The ITRP held meetings in Europe, Asia and the United States,” Dorfan said. “They received presentations and input from all of the world’s particle physics laboratories, from accelerator experts, and from particle physicists from many nations. Their work represents the recognition of the need to choose a single technology to allow the world particle physics community to proceed cooperatively to a final design. There will be many other issues to resolve before a construction decision can be made, including the choice of a site and the mechanism for international funding, but the ITRP’s decision provides a solid basis for moving forward.”

Scientists from throughout the worldwide particle physics community have endorsed an electron-positron linear collider as the next high-energy particle accelerator. In 2007, operations will begin at the Large Hadron Collider, now under construction at CERN, the European Organization for Nuclear Research, in Geneva, Switzerland. The LHC, a circular proton-proton synchrotron, will operate at the highest energies any particle accelerator has ever achieved. Together with the LHC, physicists say, the International Linear Collider would be able to address the 21st-century agenda of compelling questions about dark matter, the existence of extra dimensions and the fundamental nature of matter, energy, space and time.

CERN Director General Robert Aymar commented on progress toward an international linear collider design. “A linear collider is the logical next step to complement the discoveries that will be made at the LHC,” Aymar said. “The technology choice is an important step in the path towards an efficient development of the international TeV linear collider design, in which CERN will participate.”

Hirotaka Sugawara, former director of Japan’s KEK laboratory, also an ITRP member, described the science opportunities that a linear collider could provide. “High energy physics has a long history of using proton and electron machines in a complementary way,” Sugarawa said. “With concurrent operation, here is a remarkable opportunity to maximize the science from both a linear collider and the Large Hadron Collider. Exciting physics at the linear collider would start with the detailed study of the Higgs particle. But this would be just the beginning. We anticipate that some of the tantalizing superparticles will be within the range of discovery, opening the door to an understanding of one of the great mysteries of the universe—dark matter. We may also be able to probe extra space-time dimensions, which have so far eluded us.”

Scientists and engineers from universities and particle physics laboratories have worked on the warm and cold technologies in recent years. Much of the work on the superconducting technology has been carried out by the TESLA Collaboration centered at the Deutsches Elektronen-Synchrotron, or DESY laboratory, in Hamburg, Germany. Scientists at Stanford Linear Accelerator Center, in California, and at KEK Laboratory in Tsukuba, Japan, have led the effort to develop the warm technology.

“This decision is a significant step to bring the linear collider project forward,” KEK’s Director General Yoji Totsuka said. "The Japanese high-energy community welcomes the decision and looks forward to participating in the truly global project.”

Scientific discovery is the goal, SLAC Director Dorfan emphasized.

“Getting to the physics is the priority,” Dorfan said. “The panel was presented with two viable technologies. We at SLAC embrace the decision and look forward to working with our international partners.”

DESY Director Albrecht Wagner cited the achievement of an important milestone. "With this decision,” Wagner said, “particle physics has made a major step forward toward the future. The worldwide community of particle physicists can be proud that one of the two viable technologies has now been selected for the design of this global project, independent of its final location. ”

Hesheng Chen, director of the Institute of High Energy Physics, Beijing, welcomed this decision. “Asian particle physicists believe that the linear collider is the next-generation high-energy accelerator to meet the great challenges in twenty-first century high-energy physics and are willing to make an important contribution to the international project,” Chen said.

Michael Witherell, director of Fermi National Accelerator Laboratory, where scientists have worked on both warm and cold technologies, described the path ahead in the development of the linear collider design. “With the technology decision behind us,” Witherell said, “the particle physics community can now begin work on a global design for a linear collider. At the same time, science funding agencies from nations in Europe and Asia, along with the U.S. and others, must reach agreement on the mechanisms for funding and operating a truly global accelerator somewhere in the world. There are many steps ahead of us before an international linear collider becomes a reality, but today’s announcement of the technology choice provides an important focus.”

Jonathan Dorfan | alfa
Further information:
http://www.slac.stanford.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>