Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical model for the vibrato

18.08.2004


As her PhD defended at the Public University of Navarre, telecommunications engineer Ixone Arroabarren has analysed the vibrato, one of the most important tools of classical singers.



The study applies both to the teaching of singing in music as well as to the medical treatment of voice pathologies. It has put forward a mathematical model for the production of the voice that can be used both in the medical study/detection of pathologies of the vocal chords and speech as well as the teaching of the art of singing. This PhD has been developed within the framework of the research project awarded by CEIN as the best Project for the Transference of Research Result.

Amongst these differences, the engineer points out, that the vibrato is an exclusively musical characteristic which is of great use to the classical singer because, on the one hand, it enables the unmasking of possible off-key notes and, on the other, it makes sure the listener does not have the sensation that they are listening to the same sound. Furthermore, the theme itself has been of great interest to many researchers in areas such as physiology and musicology.


From an acoustic perspective, the vibrato in classical singing can be defined as a regular fluctuation in the fundamental frequency of the pitch or signal, the timbre and/or the volume of a single note. Nevertheless, the origin of these variations and their relation with mechanisms of voice production are still enigmatic.

Ixone Arroabarren’s thesis studies this theme in depth with aim of carrying out a complete characterisation of the vibrato in the art of classical singing, starting from the measuring and the performance of its most relevant acoustic characteristics, and ending with an analysis of its origin and relation to the mechanisms of voice production. In brief, what we are doing is to relate what we perceive acoustically what is generated physiologically. In this way, we offer an explanation of the collateral effects which we knew were there but the exact origin of which was unknown.

To carry out this study a number of Signal Processing tools have been used - “the most suitable in each case, given that the overall study of the vibrato has implicitly involved the resolution of very different problems, from calculating the instantaneous frequency of non-stationary signals to estimating the source by means of Inverse Filtering.

As an end result of the researcher’s study, she puts forward a mathematical model of voice production that can be used both for the study and medical treatment of vocal chord and speech pathologies as well as for learning the art of singing.

This model of vibrato production has permitted relating the most important acoustic characteristics - fundamental frequency, timbre and volume, with the most relevant elements in voice production at the level of acoustics, glottal source and response of the vocal tract. In this way we have demonstrated that the features of both elements do not show substantial changes during vibrato, only the fundamental frequency of the glottal excitation varying.

All this enables two models of signal production of the vibrato to be put forward. A Non-Interactive Model of Vibrato Production, has enabled relating the most important acoustic characteristics – variations in fundamental frequency, timbre and volume, with and Response of Vocal Tract elements in voice production. With this it has been shown that variations in fundamental frequency generated in the Glottal Source are the cause of the variations in timbre and volume, dependant on both elements of voice production.

Besides, there is an Interactive Model of Vibrato Production, which enables us to state that the variations in amplitude and frequency of the harmonics of the acoustic signal can be used to obtain more information about the mechanisms of voice production. Moreover, this model admits the inclusion of additional effects, such as synchronic variations of the Response of the Vocal Tract, which may be related to similar effects identified by other authors through physiological studies.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>