Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical model for the vibrato

18.08.2004


As her PhD defended at the Public University of Navarre, telecommunications engineer Ixone Arroabarren has analysed the vibrato, one of the most important tools of classical singers.



The study applies both to the teaching of singing in music as well as to the medical treatment of voice pathologies. It has put forward a mathematical model for the production of the voice that can be used both in the medical study/detection of pathologies of the vocal chords and speech as well as the teaching of the art of singing. This PhD has been developed within the framework of the research project awarded by CEIN as the best Project for the Transference of Research Result.

Amongst these differences, the engineer points out, that the vibrato is an exclusively musical characteristic which is of great use to the classical singer because, on the one hand, it enables the unmasking of possible off-key notes and, on the other, it makes sure the listener does not have the sensation that they are listening to the same sound. Furthermore, the theme itself has been of great interest to many researchers in areas such as physiology and musicology.


From an acoustic perspective, the vibrato in classical singing can be defined as a regular fluctuation in the fundamental frequency of the pitch or signal, the timbre and/or the volume of a single note. Nevertheless, the origin of these variations and their relation with mechanisms of voice production are still enigmatic.

Ixone Arroabarren’s thesis studies this theme in depth with aim of carrying out a complete characterisation of the vibrato in the art of classical singing, starting from the measuring and the performance of its most relevant acoustic characteristics, and ending with an analysis of its origin and relation to the mechanisms of voice production. In brief, what we are doing is to relate what we perceive acoustically what is generated physiologically. In this way, we offer an explanation of the collateral effects which we knew were there but the exact origin of which was unknown.

To carry out this study a number of Signal Processing tools have been used - “the most suitable in each case, given that the overall study of the vibrato has implicitly involved the resolution of very different problems, from calculating the instantaneous frequency of non-stationary signals to estimating the source by means of Inverse Filtering.

As an end result of the researcher’s study, she puts forward a mathematical model of voice production that can be used both for the study and medical treatment of vocal chord and speech pathologies as well as for learning the art of singing.

This model of vibrato production has permitted relating the most important acoustic characteristics - fundamental frequency, timbre and volume, with the most relevant elements in voice production at the level of acoustics, glottal source and response of the vocal tract. In this way we have demonstrated that the features of both elements do not show substantial changes during vibrato, only the fundamental frequency of the glottal excitation varying.

All this enables two models of signal production of the vibrato to be put forward. A Non-Interactive Model of Vibrato Production, has enabled relating the most important acoustic characteristics – variations in fundamental frequency, timbre and volume, with and Response of Vocal Tract elements in voice production. With this it has been shown that variations in fundamental frequency generated in the Glottal Source are the cause of the variations in timbre and volume, dependant on both elements of voice production.

Besides, there is an Interactive Model of Vibrato Production, which enables us to state that the variations in amplitude and frequency of the harmonics of the acoustic signal can be used to obtain more information about the mechanisms of voice production. Moreover, this model admits the inclusion of additional effects, such as synchronic variations of the Response of the Vocal Tract, which may be related to similar effects identified by other authors through physiological studies.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>