Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical model for the vibrato

18.08.2004


As her PhD defended at the Public University of Navarre, telecommunications engineer Ixone Arroabarren has analysed the vibrato, one of the most important tools of classical singers.



The study applies both to the teaching of singing in music as well as to the medical treatment of voice pathologies. It has put forward a mathematical model for the production of the voice that can be used both in the medical study/detection of pathologies of the vocal chords and speech as well as the teaching of the art of singing. This PhD has been developed within the framework of the research project awarded by CEIN as the best Project for the Transference of Research Result.

Amongst these differences, the engineer points out, that the vibrato is an exclusively musical characteristic which is of great use to the classical singer because, on the one hand, it enables the unmasking of possible off-key notes and, on the other, it makes sure the listener does not have the sensation that they are listening to the same sound. Furthermore, the theme itself has been of great interest to many researchers in areas such as physiology and musicology.


From an acoustic perspective, the vibrato in classical singing can be defined as a regular fluctuation in the fundamental frequency of the pitch or signal, the timbre and/or the volume of a single note. Nevertheless, the origin of these variations and their relation with mechanisms of voice production are still enigmatic.

Ixone Arroabarren’s thesis studies this theme in depth with aim of carrying out a complete characterisation of the vibrato in the art of classical singing, starting from the measuring and the performance of its most relevant acoustic characteristics, and ending with an analysis of its origin and relation to the mechanisms of voice production. In brief, what we are doing is to relate what we perceive acoustically what is generated physiologically. In this way, we offer an explanation of the collateral effects which we knew were there but the exact origin of which was unknown.

To carry out this study a number of Signal Processing tools have been used - “the most suitable in each case, given that the overall study of the vibrato has implicitly involved the resolution of very different problems, from calculating the instantaneous frequency of non-stationary signals to estimating the source by means of Inverse Filtering.

As an end result of the researcher’s study, she puts forward a mathematical model of voice production that can be used both for the study and medical treatment of vocal chord and speech pathologies as well as for learning the art of singing.

This model of vibrato production has permitted relating the most important acoustic characteristics - fundamental frequency, timbre and volume, with the most relevant elements in voice production at the level of acoustics, glottal source and response of the vocal tract. In this way we have demonstrated that the features of both elements do not show substantial changes during vibrato, only the fundamental frequency of the glottal excitation varying.

All this enables two models of signal production of the vibrato to be put forward. A Non-Interactive Model of Vibrato Production, has enabled relating the most important acoustic characteristics – variations in fundamental frequency, timbre and volume, with and Response of Vocal Tract elements in voice production. With this it has been shown that variations in fundamental frequency generated in the Glottal Source are the cause of the variations in timbre and volume, dependant on both elements of voice production.

Besides, there is an Interactive Model of Vibrato Production, which enables us to state that the variations in amplitude and frequency of the harmonics of the acoustic signal can be used to obtain more information about the mechanisms of voice production. Moreover, this model admits the inclusion of additional effects, such as synchronic variations of the Response of the Vocal Tract, which may be related to similar effects identified by other authors through physiological studies.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>