Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology to supercharge internet

12.08.2004


Network could operate 100 times faster



Canadian researchers have shown that nanotechnology can be used to pave the way to a supercharged Internet based entirely on light. The discovery could lead to a network 100 times faster than today’s.

In a study published today in Nano Letters, Professor Ted Sargent and colleagues advance the use of one laser beam to direct another with unprecedented control, a featured needed inside future fibre-optic networks. "This finding showcases the power of nanotechnology: to design and create purpose-built custom materials from the molecule up," says Sargent, a professor at U of T’s Edward S. Rogers Sr. Department of Electrical and Computer Engineering.


Until now, engineering researchers have been unable to capitalize on theoreticians’ predictions of the power of light to control light. The failure of real materials to live up to their theoretical potential has become known as the "Kuzyk quantum gap" in molecular nonlinear optics. "Molecular materials used to switch light signals with light have, until now, been considerably weaker than fundamental physics say they could be," says Sargent. "With this work, the ultimate capacity to process information-bearing signals using light is within our practical grasp."

To breach the Kuzyk quantum gap, Carleton University chemistry professor Wayne Wang and colleague Connie Kuang designed a material that combined nanometre-sized spherical particles known as "buckyballs" (molecules of carbon atoms resembling soccer balls) with a designed class of polymer. The polymer and buckyball combination created a clear, smooth film designed to make light particles pick up each other’s patterns.

Sargent and U of T colleague Qiying Chen then studied the optical properties of this new hybrid material. They found that the material was able to process information carried at telecommunications wavelengths – the infrared colours of light used in fibre-optic cables. "Photons – particles of light – interacted unusually strongly with one another across the set of wavelengths used for communications," says Sargent. "Calculations based on these measurements reveal that we came closer than ever to achieving what quantum mechanical physics tells us is possible."

According to Sargent, future fibre-optic communication systems could relay signals around the global network with picosecond (one trillionth of a second) switching times, resulting in an Internet 100 times faster. To do this, they need to avoid unnecessary conversions of signals between optical and electronic form. Says Sargent: "By creating a new hybrid material that can harness a light beam’s power, we’ve demonstrated a new class of materials which meets the engineering needs of future photonic networks."

The paper addresses a limit originally predicted by Washington State University theorist and physicist Professor Mark Kuzyk. Kuzyk was the first to predict the fundamental physical limits on the nonlinear properties of molecular materials in 2000 and says that by approaching the quantum limit, the U of T-Carleton team has succeeded where all other researchers have failed.

"The report on reaching the quantum limit by the Toronto and Carleton team of researchers is a major advance in the science of nonlinear optical materials that will impact directly many important technologies," says Kuzyk. "This intelligent nanoscale approach to engineering nonlinear-optical materials, which is guided by principles of quantum physics, is the birth of a new and significant materials development paradigm in synthetic research."

Ted Sargent | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

nachricht Taming 'wild' electrons in graphene
23.10.2017 | Rutgers University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>