Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology to supercharge internet

12.08.2004


Network could operate 100 times faster



Canadian researchers have shown that nanotechnology can be used to pave the way to a supercharged Internet based entirely on light. The discovery could lead to a network 100 times faster than today’s.

In a study published today in Nano Letters, Professor Ted Sargent and colleagues advance the use of one laser beam to direct another with unprecedented control, a featured needed inside future fibre-optic networks. "This finding showcases the power of nanotechnology: to design and create purpose-built custom materials from the molecule up," says Sargent, a professor at U of T’s Edward S. Rogers Sr. Department of Electrical and Computer Engineering.


Until now, engineering researchers have been unable to capitalize on theoreticians’ predictions of the power of light to control light. The failure of real materials to live up to their theoretical potential has become known as the "Kuzyk quantum gap" in molecular nonlinear optics. "Molecular materials used to switch light signals with light have, until now, been considerably weaker than fundamental physics say they could be," says Sargent. "With this work, the ultimate capacity to process information-bearing signals using light is within our practical grasp."

To breach the Kuzyk quantum gap, Carleton University chemistry professor Wayne Wang and colleague Connie Kuang designed a material that combined nanometre-sized spherical particles known as "buckyballs" (molecules of carbon atoms resembling soccer balls) with a designed class of polymer. The polymer and buckyball combination created a clear, smooth film designed to make light particles pick up each other’s patterns.

Sargent and U of T colleague Qiying Chen then studied the optical properties of this new hybrid material. They found that the material was able to process information carried at telecommunications wavelengths – the infrared colours of light used in fibre-optic cables. "Photons – particles of light – interacted unusually strongly with one another across the set of wavelengths used for communications," says Sargent. "Calculations based on these measurements reveal that we came closer than ever to achieving what quantum mechanical physics tells us is possible."

According to Sargent, future fibre-optic communication systems could relay signals around the global network with picosecond (one trillionth of a second) switching times, resulting in an Internet 100 times faster. To do this, they need to avoid unnecessary conversions of signals between optical and electronic form. Says Sargent: "By creating a new hybrid material that can harness a light beam’s power, we’ve demonstrated a new class of materials which meets the engineering needs of future photonic networks."

The paper addresses a limit originally predicted by Washington State University theorist and physicist Professor Mark Kuzyk. Kuzyk was the first to predict the fundamental physical limits on the nonlinear properties of molecular materials in 2000 and says that by approaching the quantum limit, the U of T-Carleton team has succeeded where all other researchers have failed.

"The report on reaching the quantum limit by the Toronto and Carleton team of researchers is a major advance in the science of nonlinear optical materials that will impact directly many important technologies," says Kuzyk. "This intelligent nanoscale approach to engineering nonlinear-optical materials, which is guided by principles of quantum physics, is the birth of a new and significant materials development paradigm in synthetic research."

Ted Sargent | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

Icebergs: Mathematical model calculates the collapse of shelf ice

24.08.2017 | Earth Sciences

Improved monitoring of coral reefs with the HyperDiver

24.08.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>