Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twinkle, twinkle little star, how I wonder where you are

05.08.2004


Whether viewed dimly through the haze and lights of a city or in all their glory in a pristine wilderness, the stars that surround the Earth are magnificent, and one day Earthlings will travel to some of the new planets that astronomers are locating. However, the stars we see are not necessarily where we think they are, according to an international research team.



"We know that the light from distant stars takes a very long time to reach the Earth," says Dr. Akhlesh Lakhtakia, distinguished professor of engineering science and mechanics, Penn State. "But, taking into account the distance a star will have moved while that light travels, we still may not be able to accurately locate the star.

Negative phase velocity media or materials with negative refractive index may be responsible for this locational uncertainty. Recently, materials researchers at the University of California San Diego, working with micro and nano materials, developed a metamaterial that had a negative refractive index for microwaves, proving that negative phase materials could exist at least in the microwave part of the electromagnetic spectrum. Their requirements for this material were that both the relative permittivity, a measure of the charge separation in a material, and the relative permeability, a measure of how electrons loop in materials, of a substance must be less than zero.


While the implications for negative phase velocity media in the nano world are the creation of a perfect lens, a lens with no distortion with applications for optical transmission devices, CDs, DVDs, microwave systems, etc., in the universe at large, these media can disguise the location of a star, according to the researchers.

A material with negative index of refraction transmits light or other wave energy differently than one with positive index of refraction. In all natural materials, when an energy beam Ð light, radar, microwave Ð passes through water or glass or some other material, the beam is displaced in the same direction. The amount of displacement depends upon how much the material slows the speed of the beam. In negative phase velocity media, the displacement is in the opposite direction.

Lakhtakia and Tom. G. Mackay, lecturer in Mathematics, University of Edinburgh decided to look at why the permittivity and permeability had to be less than zero. They found that one or both permeability and permittivity could be less than zero and negative phase velocity would occur. They then found that both could be greater than zero and a negative index of refraction would occur but only when special relativity came into play.

The researchers looked at transmission through space, where high velocities are common.

"First I did the derivations with the observer moving and the energy source stationary," says Lakhtakia. " Then Mackay did the derivations with the observer stationary and the light source moving."

What they found was that it depends on the state of the observer whether any particular media at any time has negative or positive index of refraction. The relative velocity of the observer changes the index of any material.

"Light coming off a stellar object passes through many different regions of space filled with different media and is affected by different gravitational fields," says Lakhtakia. "When we finally see it, we cannot really know where it originated."

While this may be of no consequence today, Lakhtakia believes it has important implications for when space travel is common. Because this is a direction dependent effect, it will change the telemetry of objects and spacecraft.

"The business of space navigation and interpreting star maps could be a lot more complicated than we now think it is," says Lakhtakia. "Imagine mining of extrasolar asteroids. We might not want to send humans to do the mining, but robots would have to know where the asteroid is and where on its surface to mine when it left our solar system."

Calculations would need to be made from Earth on an asteroid that might not be where we visually see it. The effects of negative phase velocity media would need to be taken into consideration.

Another problem would be navigating from somewhere far away from the Earth in a space ship using information gathered from the Earth. Depending on the velocity of the spacecraft and the object aimed for, negative phase velocity media between the spacecraft and the destination would also need to be considered.

Vicki Fong | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>