Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twinkle, twinkle little star, how I wonder where you are

05.08.2004


Whether viewed dimly through the haze and lights of a city or in all their glory in a pristine wilderness, the stars that surround the Earth are magnificent, and one day Earthlings will travel to some of the new planets that astronomers are locating. However, the stars we see are not necessarily where we think they are, according to an international research team.



"We know that the light from distant stars takes a very long time to reach the Earth," says Dr. Akhlesh Lakhtakia, distinguished professor of engineering science and mechanics, Penn State. "But, taking into account the distance a star will have moved while that light travels, we still may not be able to accurately locate the star.

Negative phase velocity media or materials with negative refractive index may be responsible for this locational uncertainty. Recently, materials researchers at the University of California San Diego, working with micro and nano materials, developed a metamaterial that had a negative refractive index for microwaves, proving that negative phase materials could exist at least in the microwave part of the electromagnetic spectrum. Their requirements for this material were that both the relative permittivity, a measure of the charge separation in a material, and the relative permeability, a measure of how electrons loop in materials, of a substance must be less than zero.


While the implications for negative phase velocity media in the nano world are the creation of a perfect lens, a lens with no distortion with applications for optical transmission devices, CDs, DVDs, microwave systems, etc., in the universe at large, these media can disguise the location of a star, according to the researchers.

A material with negative index of refraction transmits light or other wave energy differently than one with positive index of refraction. In all natural materials, when an energy beam Ð light, radar, microwave Ð passes through water or glass or some other material, the beam is displaced in the same direction. The amount of displacement depends upon how much the material slows the speed of the beam. In negative phase velocity media, the displacement is in the opposite direction.

Lakhtakia and Tom. G. Mackay, lecturer in Mathematics, University of Edinburgh decided to look at why the permittivity and permeability had to be less than zero. They found that one or both permeability and permittivity could be less than zero and negative phase velocity would occur. They then found that both could be greater than zero and a negative index of refraction would occur but only when special relativity came into play.

The researchers looked at transmission through space, where high velocities are common.

"First I did the derivations with the observer moving and the energy source stationary," says Lakhtakia. " Then Mackay did the derivations with the observer stationary and the light source moving."

What they found was that it depends on the state of the observer whether any particular media at any time has negative or positive index of refraction. The relative velocity of the observer changes the index of any material.

"Light coming off a stellar object passes through many different regions of space filled with different media and is affected by different gravitational fields," says Lakhtakia. "When we finally see it, we cannot really know where it originated."

While this may be of no consequence today, Lakhtakia believes it has important implications for when space travel is common. Because this is a direction dependent effect, it will change the telemetry of objects and spacecraft.

"The business of space navigation and interpreting star maps could be a lot more complicated than we now think it is," says Lakhtakia. "Imagine mining of extrasolar asteroids. We might not want to send humans to do the mining, but robots would have to know where the asteroid is and where on its surface to mine when it left our solar system."

Calculations would need to be made from Earth on an asteroid that might not be where we visually see it. The effects of negative phase velocity media would need to be taken into consideration.

Another problem would be navigating from somewhere far away from the Earth in a space ship using information gathered from the Earth. Depending on the velocity of the spacecraft and the object aimed for, negative phase velocity media between the spacecraft and the destination would also need to be considered.

Vicki Fong | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>