Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Twinkle, twinkle little star, how I wonder where you are


Whether viewed dimly through the haze and lights of a city or in all their glory in a pristine wilderness, the stars that surround the Earth are magnificent, and one day Earthlings will travel to some of the new planets that astronomers are locating. However, the stars we see are not necessarily where we think they are, according to an international research team.

"We know that the light from distant stars takes a very long time to reach the Earth," says Dr. Akhlesh Lakhtakia, distinguished professor of engineering science and mechanics, Penn State. "But, taking into account the distance a star will have moved while that light travels, we still may not be able to accurately locate the star.

Negative phase velocity media or materials with negative refractive index may be responsible for this locational uncertainty. Recently, materials researchers at the University of California San Diego, working with micro and nano materials, developed a metamaterial that had a negative refractive index for microwaves, proving that negative phase materials could exist at least in the microwave part of the electromagnetic spectrum. Their requirements for this material were that both the relative permittivity, a measure of the charge separation in a material, and the relative permeability, a measure of how electrons loop in materials, of a substance must be less than zero.

While the implications for negative phase velocity media in the nano world are the creation of a perfect lens, a lens with no distortion with applications for optical transmission devices, CDs, DVDs, microwave systems, etc., in the universe at large, these media can disguise the location of a star, according to the researchers.

A material with negative index of refraction transmits light or other wave energy differently than one with positive index of refraction. In all natural materials, when an energy beam Ð light, radar, microwave Ð passes through water or glass or some other material, the beam is displaced in the same direction. The amount of displacement depends upon how much the material slows the speed of the beam. In negative phase velocity media, the displacement is in the opposite direction.

Lakhtakia and Tom. G. Mackay, lecturer in Mathematics, University of Edinburgh decided to look at why the permittivity and permeability had to be less than zero. They found that one or both permeability and permittivity could be less than zero and negative phase velocity would occur. They then found that both could be greater than zero and a negative index of refraction would occur but only when special relativity came into play.

The researchers looked at transmission through space, where high velocities are common.

"First I did the derivations with the observer moving and the energy source stationary," says Lakhtakia. " Then Mackay did the derivations with the observer stationary and the light source moving."

What they found was that it depends on the state of the observer whether any particular media at any time has negative or positive index of refraction. The relative velocity of the observer changes the index of any material.

"Light coming off a stellar object passes through many different regions of space filled with different media and is affected by different gravitational fields," says Lakhtakia. "When we finally see it, we cannot really know where it originated."

While this may be of no consequence today, Lakhtakia believes it has important implications for when space travel is common. Because this is a direction dependent effect, it will change the telemetry of objects and spacecraft.

"The business of space navigation and interpreting star maps could be a lot more complicated than we now think it is," says Lakhtakia. "Imagine mining of extrasolar asteroids. We might not want to send humans to do the mining, but robots would have to know where the asteroid is and where on its surface to mine when it left our solar system."

Calculations would need to be made from Earth on an asteroid that might not be where we visually see it. The effects of negative phase velocity media would need to be taken into consideration.

Another problem would be navigating from somewhere far away from the Earth in a space ship using information gathered from the Earth. Depending on the velocity of the spacecraft and the object aimed for, negative phase velocity media between the spacecraft and the destination would also need to be considered.

Vicki Fong | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>