Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kavli gift jumpstarts MIT astrophysics, more

04.08.2004


MIT research on the most exciting questions in astrophysics and space science has been recognized by a $7.5 million gift from the Kavli Foundation that will jumpstart new studies of the cosmos.

"The Kavli gift allows us to invest in new scientific areas and new technologies at the forefront of these fields," said Professor of Physics Jacqueline N. Hewitt. "We can bring new tools to bear on some of the most interesting questions before us: What is the dark energy that appears to pervade the universe? How did the first star form? How does gravity work?" Hewitt is director of MIT’s Center for Space Research, which will be renamed the Kavli Institute for Astrophysics and Space Research (KIASR).

"I am extremely pleased that the Kavli Institute for Astrophysics and Space Research at MIT is joining the network of Kavli Institutes," said Kavli Foundation Chairman and philanthropist Fred Kavli. "MIT has an outstanding record of research accomplishments and the KIASR will be a welcome and eminent partner to the other Kavli Institutes."



Kavli’s lifelong work in instrumentation for the aerospace and automotive industries piqued his interest in the MIT center, which has a unique capacity to design and fabricate highly specialized scientific instrumentation for use in such important initiatives as the Chandra X-Ray Observatory and the LIGO project, which seeks to detect the gravitational waves predicted by Einstein.

MIT President Charles M. Vest praised Kavli "for the wisdom of focusing his philanthropy on fundamental science. Our hope is that this grant will mark the start of a long and fruitful relationship between MIT and the Kavli Foundation, which has quickly established itself as a leader in funding scientific research at the cutting edge of astrophysics, neuroscience and nanoscience."

MIT Provost Robert A. Brown said, " The establishment of the KIASR at MIT is a wonderful development for MIT and for astrophysics research. The new resources will greatly enhance the science that can be accomplished by our faculty, students and research staff."

Said MIT’s Dean of Science, Robert J. Silbey, "The entire physics community at MIT will benefit from this wonderful development that will enhance our efforts in both observational and theoretical astrophysics."

Among other activities, KIASR will be home to three-year Kavli Research Programs that will enable the exploratory and innovative work necessary to develop new research areas. The inaugural program, led by Professor of Physics Edmund Bertschinger, will explore dark energy and dark matter. Over ninety-five percent of the mass-energy in the universe is in a form other than conventional atomic matter. The normal stuff of laboratory physics (and all science and technology) is little more than the froth on a cosmic ocean of dark matter and energy.

Bertschinger’s team, which includes five other leading scholars in cosmology, particle physics and astrophysics, will work toward determining the composition and properties of dark matter and energy. Ultimately the research could advance our understanding of the deepest aspects of nature, including the origins of space, time, and matter.

The new MIT institute is the tenth created by the Kavli Foundation since its founding in December 2000. All focus on neuroscience, cosmology, or nanoscience. "I have selected these three areas of emphasis because I believe they provide the greatest opportunity for major scientific breakthroughs and will have long-range benefits for humanity," said Kavli.

The nine other Kavli Institutes are located at Columbia University (brain science), Stanford (particle astrophysics & cosmology), University of California at San Diego (brain & mind), University of California at Santa Barbara (theoretical physics), Delft University of Technology in the Netherlands (nanoscience), Yale (neuroscience), Cornell University (nanoscale science), California Institute of Technology (nanoscience), and University of Chicago (cosmological physics).

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>