Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kavli gift jumpstarts MIT astrophysics, more

04.08.2004


MIT research on the most exciting questions in astrophysics and space science has been recognized by a $7.5 million gift from the Kavli Foundation that will jumpstart new studies of the cosmos.

"The Kavli gift allows us to invest in new scientific areas and new technologies at the forefront of these fields," said Professor of Physics Jacqueline N. Hewitt. "We can bring new tools to bear on some of the most interesting questions before us: What is the dark energy that appears to pervade the universe? How did the first star form? How does gravity work?" Hewitt is director of MIT’s Center for Space Research, which will be renamed the Kavli Institute for Astrophysics and Space Research (KIASR).

"I am extremely pleased that the Kavli Institute for Astrophysics and Space Research at MIT is joining the network of Kavli Institutes," said Kavli Foundation Chairman and philanthropist Fred Kavli. "MIT has an outstanding record of research accomplishments and the KIASR will be a welcome and eminent partner to the other Kavli Institutes."



Kavli’s lifelong work in instrumentation for the aerospace and automotive industries piqued his interest in the MIT center, which has a unique capacity to design and fabricate highly specialized scientific instrumentation for use in such important initiatives as the Chandra X-Ray Observatory and the LIGO project, which seeks to detect the gravitational waves predicted by Einstein.

MIT President Charles M. Vest praised Kavli "for the wisdom of focusing his philanthropy on fundamental science. Our hope is that this grant will mark the start of a long and fruitful relationship between MIT and the Kavli Foundation, which has quickly established itself as a leader in funding scientific research at the cutting edge of astrophysics, neuroscience and nanoscience."

MIT Provost Robert A. Brown said, " The establishment of the KIASR at MIT is a wonderful development for MIT and for astrophysics research. The new resources will greatly enhance the science that can be accomplished by our faculty, students and research staff."

Said MIT’s Dean of Science, Robert J. Silbey, "The entire physics community at MIT will benefit from this wonderful development that will enhance our efforts in both observational and theoretical astrophysics."

Among other activities, KIASR will be home to three-year Kavli Research Programs that will enable the exploratory and innovative work necessary to develop new research areas. The inaugural program, led by Professor of Physics Edmund Bertschinger, will explore dark energy and dark matter. Over ninety-five percent of the mass-energy in the universe is in a form other than conventional atomic matter. The normal stuff of laboratory physics (and all science and technology) is little more than the froth on a cosmic ocean of dark matter and energy.

Bertschinger’s team, which includes five other leading scholars in cosmology, particle physics and astrophysics, will work toward determining the composition and properties of dark matter and energy. Ultimately the research could advance our understanding of the deepest aspects of nature, including the origins of space, time, and matter.

The new MIT institute is the tenth created by the Kavli Foundation since its founding in December 2000. All focus on neuroscience, cosmology, or nanoscience. "I have selected these three areas of emphasis because I believe they provide the greatest opportunity for major scientific breakthroughs and will have long-range benefits for humanity," said Kavli.

The nine other Kavli Institutes are located at Columbia University (brain science), Stanford (particle astrophysics & cosmology), University of California at San Diego (brain & mind), University of California at Santa Barbara (theoretical physics), Delft University of Technology in the Netherlands (nanoscience), Yale (neuroscience), Cornell University (nanoscale science), California Institute of Technology (nanoscience), and University of Chicago (cosmological physics).

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>