Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swift Satellite To Catch Mysterious Bursts From Deep In The Cosmos

30.07.2004


An Artist’s impression of Swift, Credit: Spectrum Astro


The NASA Swift satellite, which will pinpoint the location of distant yet fleeting explosions that appear to signal the births of black holes, is due to arrive at the Kennedy Space Centre in Florida today in preparation for an October launch. UK scientists, from the University of Leicester and University College London’s Mullard Space Science Laboratory, have provided key technology for two of the instruments on Swift.

Professor Alan Wells from the University of Leicester, UK Lead Investigator for the X-ray Telescope onboard Swift, is eagerly awaiting the launch and the start of the mission to track these enigmatic flashes called gamma-ray bursts.

“Swift is an awe-inspiring mission – tracking down what are the fastest and most powerful events in the Universe. UK scientists have lead roles in two of the three instruments – the X-ray telescope and the UV/Optical telescope which both use new technologies that we have developed in our laboratories. These telescopes will provide unique information on these bursts to help us unravel what is going on in these amazing cosmological events.”



Gamma-ray bursts are the most powerful explosions known in the Universe, emitting more than one hundred billion times the energy that the Sun emits in an entire year. Yet they last only a few milliseconds to a few minutes. However, in most bursts, an afterglow phenomenon frequently follows the initial gamma-ray flash in which emission of X-rays, optical light and radio waves continues, sometimes for hours to weeks after the initial burst has subsided.

The Swift satellite is named after the nimble migratory bird, because it can swiftly dart around the sky and catch the burst "on the fly" to study both the burst and its afterglow. "Gamma-ray bursts have ranked among the biggest mysteries in astronomy since their discovery over 35 years ago," said Dr. Neil Gehrels, Swift Lead Scientist from NASA’s Goddard Space Flight Centre in Greenbelt, Maryland. "Swift is just the right tool needed to solve this mystery. One of Swift’s instruments will detect the burst, while, within a minute, two higher-resolution telescopes will be swung round for an in-depth look. Meanwhile, Swift will ’e-mail’ scientists and telescopes around the world to observe the burst in real-time."

The Burst Alert Telescope (BAT), built by NASA Goddard, will detect and locate about two gamma-ray bursts per week, relaying a 1- to 4-arc-minute position to the ground within about 20 seconds. This position will then be used to "swiftly" steer the satellite to point the X-ray Telescope (XRT), built by Penn State University, the University of Leicester and the Osservatorio Astronomico di Brera, Italy and the UltraViolet/Optical Telescope (UVOT), from Penn State and University College, London’s Mullard Space Science Laboratory, directly at the burst position.

These two longer-wavelength (lower-energy) instruments will then rapidly pin-point the position of the burst to arc-second accuracy (needed for other ground-based telescopes to find it) and then measure the red-shift, or distance, to the burst source and follow the decay of the afterglow. This is important because the afterglow provides crucial information about the dynamics of the burst and the effects these vast explosions have on gas clouds in nearby galaxies and interstellar space.

Theorists have suggested that some bursts may originate from the first generation of stars in the early Universe, and Swift’s unprecedented sensitivity will provide the first opportunity to test this hypothesis.

Some types of bursts are linked with the death of massive stars but others may signal the merger of neutron stars or black holes orbiting each other in exotic binary star systems. Swift will determine whether there are different classes of gamma-ray bursts associated with different processes by which bursts are created. So far, afterglows have only been seen for bursts lasting longer than two seconds but Swift may be fast enough to identify afterglows from short bursts, if they exist. "We may be seeing only half the story so far," said Gehrels.

Every time a burst is detected, Swift notifies a wide community, ranging from astronomers at world-class observatories to university and schools science classes and even public visitors at science centres and museums - via the Goddard-maintained Gamma-ray Burst Coordinates Network (GCN). The UK-based Faulkes Telescope Project, with telescopes in Hawaii and Australia forms part of a network of dedicated ground-based robotic telescopes distributed around the world that await Swift-GCN alerts, along with the European Southern Observatory’s Very Large Telescope in Chile.

Continuous burst information flows through the Swift Mission Operations Centre, located at Penn State University, which is also relayed to the SWIFT UL Science Data Centre at Leicester.

"Some bursts likely originate from the farthest reaches, and hence earliest epoch, of the Universe," said Swift Mission Director John Nousek, professor of astronomy and astrophysics at Penn State. "They act like beacons shining through everything along their paths, including the gas between and within galaxies along the line of sight."

The Swift team expects to detect and analyze over 100 bursts a year. When not catching gamma-ray bursts, Swift will conduct an all-sky survey at high-energy "hard" X-ray wavelengths, which will be 20 times more sensitive than previous measurements. Scientists expect that Swift’s enhanced sensitivity relative to earlier surveys will uncover over 400 new supermassive black holes.

Swift, a medium-class Explorer mission, is managed by NASA’s Goddard Space Flight Center in Greenbelt, Md., Swift was built in collaboration with national laboratories, and universities, including the Los Alamos National Laboratory, Penn State University, Sonoma State University, and international partners, in Italy, and the University of Leicester and University College’s Mullard Space Science Laboratory in the UK.

The UK contribution to the cost of the instruments has been funded through the Particle Physics and Astronomy Research Council.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>