Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swift Satellite To Catch Mysterious Bursts From Deep In The Cosmos

30.07.2004


An Artist’s impression of Swift, Credit: Spectrum Astro


The NASA Swift satellite, which will pinpoint the location of distant yet fleeting explosions that appear to signal the births of black holes, is due to arrive at the Kennedy Space Centre in Florida today in preparation for an October launch. UK scientists, from the University of Leicester and University College London’s Mullard Space Science Laboratory, have provided key technology for two of the instruments on Swift.

Professor Alan Wells from the University of Leicester, UK Lead Investigator for the X-ray Telescope onboard Swift, is eagerly awaiting the launch and the start of the mission to track these enigmatic flashes called gamma-ray bursts.

“Swift is an awe-inspiring mission – tracking down what are the fastest and most powerful events in the Universe. UK scientists have lead roles in two of the three instruments – the X-ray telescope and the UV/Optical telescope which both use new technologies that we have developed in our laboratories. These telescopes will provide unique information on these bursts to help us unravel what is going on in these amazing cosmological events.”



Gamma-ray bursts are the most powerful explosions known in the Universe, emitting more than one hundred billion times the energy that the Sun emits in an entire year. Yet they last only a few milliseconds to a few minutes. However, in most bursts, an afterglow phenomenon frequently follows the initial gamma-ray flash in which emission of X-rays, optical light and radio waves continues, sometimes for hours to weeks after the initial burst has subsided.

The Swift satellite is named after the nimble migratory bird, because it can swiftly dart around the sky and catch the burst "on the fly" to study both the burst and its afterglow. "Gamma-ray bursts have ranked among the biggest mysteries in astronomy since their discovery over 35 years ago," said Dr. Neil Gehrels, Swift Lead Scientist from NASA’s Goddard Space Flight Centre in Greenbelt, Maryland. "Swift is just the right tool needed to solve this mystery. One of Swift’s instruments will detect the burst, while, within a minute, two higher-resolution telescopes will be swung round for an in-depth look. Meanwhile, Swift will ’e-mail’ scientists and telescopes around the world to observe the burst in real-time."

The Burst Alert Telescope (BAT), built by NASA Goddard, will detect and locate about two gamma-ray bursts per week, relaying a 1- to 4-arc-minute position to the ground within about 20 seconds. This position will then be used to "swiftly" steer the satellite to point the X-ray Telescope (XRT), built by Penn State University, the University of Leicester and the Osservatorio Astronomico di Brera, Italy and the UltraViolet/Optical Telescope (UVOT), from Penn State and University College, London’s Mullard Space Science Laboratory, directly at the burst position.

These two longer-wavelength (lower-energy) instruments will then rapidly pin-point the position of the burst to arc-second accuracy (needed for other ground-based telescopes to find it) and then measure the red-shift, or distance, to the burst source and follow the decay of the afterglow. This is important because the afterglow provides crucial information about the dynamics of the burst and the effects these vast explosions have on gas clouds in nearby galaxies and interstellar space.

Theorists have suggested that some bursts may originate from the first generation of stars in the early Universe, and Swift’s unprecedented sensitivity will provide the first opportunity to test this hypothesis.

Some types of bursts are linked with the death of massive stars but others may signal the merger of neutron stars or black holes orbiting each other in exotic binary star systems. Swift will determine whether there are different classes of gamma-ray bursts associated with different processes by which bursts are created. So far, afterglows have only been seen for bursts lasting longer than two seconds but Swift may be fast enough to identify afterglows from short bursts, if they exist. "We may be seeing only half the story so far," said Gehrels.

Every time a burst is detected, Swift notifies a wide community, ranging from astronomers at world-class observatories to university and schools science classes and even public visitors at science centres and museums - via the Goddard-maintained Gamma-ray Burst Coordinates Network (GCN). The UK-based Faulkes Telescope Project, with telescopes in Hawaii and Australia forms part of a network of dedicated ground-based robotic telescopes distributed around the world that await Swift-GCN alerts, along with the European Southern Observatory’s Very Large Telescope in Chile.

Continuous burst information flows through the Swift Mission Operations Centre, located at Penn State University, which is also relayed to the SWIFT UL Science Data Centre at Leicester.

"Some bursts likely originate from the farthest reaches, and hence earliest epoch, of the Universe," said Swift Mission Director John Nousek, professor of astronomy and astrophysics at Penn State. "They act like beacons shining through everything along their paths, including the gas between and within galaxies along the line of sight."

The Swift team expects to detect and analyze over 100 bursts a year. When not catching gamma-ray bursts, Swift will conduct an all-sky survey at high-energy "hard" X-ray wavelengths, which will be 20 times more sensitive than previous measurements. Scientists expect that Swift’s enhanced sensitivity relative to earlier surveys will uncover over 400 new supermassive black holes.

Swift, a medium-class Explorer mission, is managed by NASA’s Goddard Space Flight Center in Greenbelt, Md., Swift was built in collaboration with national laboratories, and universities, including the Los Alamos National Laboratory, Penn State University, Sonoma State University, and international partners, in Italy, and the University of Leicester and University College’s Mullard Space Science Laboratory in the UK.

The UK contribution to the cost of the instruments has been funded through the Particle Physics and Astronomy Research Council.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>