Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Observations of Newborn Star Provide Information on Solar System’s Origin

23.07.2004


A new study has caught a newborn star similar to the sun in a fiery outburst. X-ray observations of the flare-up, which are the first of their kind, are providing important new information about the early evolution of the sun and the process of planet formation.



The study, which was conducted by a team of astronomers headed by Joel Kastner of the Rochester Institute of Technology that included David Weintraub from Vanderbilt, is reported in the July 22 issue of the journal Nature.

Last January, Jay McNeil, an amateur astronomer in west Kentucky, discovered a new cloud of dust and gas in the Orion region. Previously, the cloud, now named the McNeil nebula, was not visible from earth. But a new star inside the dark cloud had flared up in brightness, lighting up the surrounding nebula. Looking back at the images taken of this part of the sky revealed that a young star about the size of the sun had burst into visibility last November.


Despite the fact that hundreds of telescopes scan the sky nightly, the discovery of a new star is an extremely rare event, having occurred only twice in the last century. What made this star even more special was that the fact that it appears to be an extremely young star – far less than a million years old – that is about the same mass as the sun. Astronomers know of fewer than a dozen of these stars, which they call FU-Orionis-type. Although this is the third FU-Orionis that has been caught in the act of flaring, it is the first that has occurred in modern times when its behavior could be monitored not only in visible light, but also in radio, infrared and X-ray wavelengths.

“In FU-Orionis stars, these outbursts are very brief,” says Weintraub, associate professor of astronomy. “They brighten by as much as 100 thousand times in a few months and then fade away over a number of months.”

Knowing that time was short, Kastner and Weintraub submitted an emergency request for viewing time on the orbiting Chandra X-ray observatory. Because X-rays are generated by extremely violent events, they provide a critical window for observing extreme stellar flare-ups of this sort. The astronomers were granted two viewing times in early and late March.

Using Chandra, the astronomers discovered that the star, which has been officially named V1647 Ori, was a very bright X-ray source in early March, but its X-ray brightness had decreased substantially by the end of the month before the star disappeared from view behind the sun. (At the same time, the new star was fading in visible and infrared wavelengths.)

In addition, the astronomers learned that Ted Simon from the Institute for Astronomy in Hawaii had taken some serendipitous X-ray images of the same area in 2002 for another purpose. These showed no X-rays coming from the V1647 Ori’s location at the time, supporting the idea that the recent X-ray production was directly associated with the star’s flare-up.

Kastner and Weintraub propose a novel mechanism to explain their observations. Many stars, including the sun, produce X-rays by a mechanism that depends on the star’s rotation rate and convection depth. But the astronomers calculate that the temperature of the gas that is producing the X-rays at V1647 ORI is substantially higher than can be explained by this traditional mechanism.

Observations of V1647 Ori indicate that it possesses a “protoplanetary” disk – a thin disk extending out from a star’s equator that contains dust and gas left over from the star’s formation and from which planets form. Kastner and Weintraub argue that the flare was touched off by a sudden avalanche of disk material falling onto the surface of the star and that this was the source of the intense X-rays as well as the other forms of radiation.

If their hypothesis is correct, X-ray observations may help discriminate between young stars that possess protoplanetary disks and those that don’t, Weintraub says.

There is a disagreement among astronomers about whether FU-Orionis stars undergo outbursts of this sort only once, several times or dozens of times before they settle into maturity. Other astronomers who have looked further back in the astronomical records for V1647 Ori have found that it also flared up in 1965, which provides added support for the multiple outburst theories.

Other participants in the study were Michael Richmond at Rochester Institute of Technology, Nicolas Grosso and H. Ozawa at the Laboratoire d’Astrophysique de Grenoble, A. Frank at the University of Rochester, Kenji Hamaguchi at NASA’s Goddard Space Flight Center and Arne Henden at the U.S. Naval Observatory.

Kastner and Weintraub have been awarded time to conduct additional observing time on Chandra so they can measure the X-ray activity of the new star beginning in October when it comes visible once again.

| newswise
Further information:
http://www.vanderbilt.edu
http://www.exploration.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>