Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computers probe how giant planets formed


Nearly five billion years ago, the giant gaseous planets Jupiter and Saturn formed, apparently in radically different ways.So says a scientist at the Laboratory who created exhaustive computer models based on experiments in which the element hydrogen was shocked to pressures nearly as great as those found inside the two planets.

Working with a French colleague, Didier Saumon of Material Science (X-7) created models establishing that heavy elements are concentrated in Saturn’s massive core, while those same elements are mixed throughout Jupiter, with very little or no central core at all. The study, published in this week’s Astrophysical Journal, showed that refractory elements such as iron, silicon, carbon, nitrogen and oxygen are concentrated in Saturn’s core, but are diffused in Jupiter, leading to a hypothesis that they were formed through different processes.

Saumon collected data from several recent shock compression experiments that have showed how hydrogen behaves at pressures a million times greater than atmospheric pressure, approaching those present in the gas giants. These experiments- performed over the past several years at U.S. national labs and in Russia- have for the first time permitted accurate measurements of the so-called equation of state of simple fluids, such as hydrogen, within the high-pressure and high-density realm where ionization occurs for deuterium, the isotope made of a hydrogen atom with an additional neutron.

Working with T. Guillot of the Observatoire de la Cote d’Azur, France, Saumon developed about 50,000 different models of the internal structures of the two giant gaseous planets that included every possible variation permitted by astrophysical observations and laboratory experiments.

"Some data from earlier planetary probes gave us indirect information about what takes place inside Saturn and Jupiter, and now we’re hoping to learn more from the Cassini mission that just arrived in Saturn’s orbit," Saumon said. "We selected only the computer models that fit the planetary observations."

Jupiter, Saturn and the other giant planets are made up of gases, like the sun. The two planets are about 70 percent hydrogen by mass, with the rest mostly helium and small amounts of heavier elements. Therefore, their interior structures were hard to calculate because hydrogen’s equation of state at high pressures wasn’t well understood.

Saumon and Guillot constrained their computer models with data from the deuterium experiments, thereby reducing previous uncertainties for the equation of state of hydrogen, which is the central ingredient needed to improve models of the structures of the planets and how they formed.

"We tried to include every possible variation that might be allowed by the experimental data on shock compression of deuterium," Saumon explained.

By estimating the total amount of the heavy elements and their distribution inside Jupiter and Saturn, the models provide a better picture of how the planets formed through the accretion of hydrogen, helium and solid elements from the nebula that swirled around the sun billions of years ago.

"There’s been general agreement that the cores of Saturn and Jupiter are different," Saumon said. "What’s new here is how exhaustive these models are. We’ve managed to eliminate or quantify many of the uncertainties, so we have much better confidence in the range within which the actual data will fall for hydrogen, and therefore for the refractory metals and other elements.

"Although we can’t say our models are precise, we know quite well how imprecise they are," he added.

These results from the models will help guide measurements to be taken by Cassini and future proposed interplanetary space probes to Jupiter.

Jim Danneskiold | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>