Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computers probe how giant planets formed

14.07.2004


Nearly five billion years ago, the giant gaseous planets Jupiter and Saturn formed, apparently in radically different ways.So says a scientist at the Laboratory who created exhaustive computer models based on experiments in which the element hydrogen was shocked to pressures nearly as great as those found inside the two planets.



Working with a French colleague, Didier Saumon of Material Science (X-7) created models establishing that heavy elements are concentrated in Saturn’s massive core, while those same elements are mixed throughout Jupiter, with very little or no central core at all. The study, published in this week’s Astrophysical Journal, showed that refractory elements such as iron, silicon, carbon, nitrogen and oxygen are concentrated in Saturn’s core, but are diffused in Jupiter, leading to a hypothesis that they were formed through different processes.

Saumon collected data from several recent shock compression experiments that have showed how hydrogen behaves at pressures a million times greater than atmospheric pressure, approaching those present in the gas giants. These experiments- performed over the past several years at U.S. national labs and in Russia- have for the first time permitted accurate measurements of the so-called equation of state of simple fluids, such as hydrogen, within the high-pressure and high-density realm where ionization occurs for deuterium, the isotope made of a hydrogen atom with an additional neutron.


Working with T. Guillot of the Observatoire de la Cote d’Azur, France, Saumon developed about 50,000 different models of the internal structures of the two giant gaseous planets that included every possible variation permitted by astrophysical observations and laboratory experiments.

"Some data from earlier planetary probes gave us indirect information about what takes place inside Saturn and Jupiter, and now we’re hoping to learn more from the Cassini mission that just arrived in Saturn’s orbit," Saumon said. "We selected only the computer models that fit the planetary observations."

Jupiter, Saturn and the other giant planets are made up of gases, like the sun. The two planets are about 70 percent hydrogen by mass, with the rest mostly helium and small amounts of heavier elements. Therefore, their interior structures were hard to calculate because hydrogen’s equation of state at high pressures wasn’t well understood.

Saumon and Guillot constrained their computer models with data from the deuterium experiments, thereby reducing previous uncertainties for the equation of state of hydrogen, which is the central ingredient needed to improve models of the structures of the planets and how they formed.

"We tried to include every possible variation that might be allowed by the experimental data on shock compression of deuterium," Saumon explained.

By estimating the total amount of the heavy elements and their distribution inside Jupiter and Saturn, the models provide a better picture of how the planets formed through the accretion of hydrogen, helium and solid elements from the nebula that swirled around the sun billions of years ago.

"There’s been general agreement that the cores of Saturn and Jupiter are different," Saumon said. "What’s new here is how exhaustive these models are. We’ve managed to eliminate or quantify many of the uncertainties, so we have much better confidence in the range within which the actual data will fall for hydrogen, and therefore for the refractory metals and other elements.

"Although we can’t say our models are precise, we know quite well how imprecise they are," he added.

These results from the models will help guide measurements to be taken by Cassini and future proposed interplanetary space probes to Jupiter.

Jim Danneskiold | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>