Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA Considers The Next Step In Assessing The Risk Fom Near-Earth Objects

14.07.2004


On 9 July 2004, the Near-Earth Object Mission Advisory Panel recommended that ESA place a high priority on developing a mission to actually move an asteroid. The conclusion was based on the panel’s consideration of six near-Earth object mission studies submitted to the Agency in February 2003.



Of the six studies, three were space-based observatories for detecting NEOs and three were rendezvous missions. All addressed the growing realisation of the threat posed by Near-Earth Objects (NEOs) and proposed ways of detecting NEOs or discovering more about them from a close distance.

A panel of six experts, known as the Near-Earth Object Mission Advisory Panel (NEOMAP) assessed the proposals. Alan Harris, German Aerospace Centre (DLR), Berlin, and Chairman of NEOMAP, says, “The task has been very difficult because the goalposts have changed. When the studies were commissioned, the discovery business was in no way as advanced as it is now. Today, a number of organisations are building large telescopes on Earth that promise to find a very large percentage of the NEO population at even smaller sizes than visible today.”


As a result, the panel decided that ESA should leave detection to ground-based telescopes for the time being, until the share of the remaining population not visible from the ground becomes better known. The need for a space-based observatory will then be re-assessed. The panel placed its highest priority on rendezvous missions, and in particular, the Don Quijote mission concept. “If you think about the chain of events between detecting a hazardous object and doing something about it, there is one area in which we have no experience at all and that is in directly interacting with an asteroid, trying to alter its orbit,” explains Harris.

The Don Quijote mission concept will do this by using two spacecraft, Sancho and Hidalgo. Both are launched at the same time but Sancho takes a faster route. When it arrives at the target asteroid it will begin a seven-month campaign of observation and physical characterisation during which it will land penetrators and seismometers on the asteroid’s surface to understand its internal structure.

Sancho will then watch as Hidalgo arrives and smashes into the asteroid at very high speed. This will provide information about the behaviour of the internal structure of the asteroid during an impact event as well as excavating some of the interior for Sancho to observe. After the impact, Sancho and telescopes from Earth will monitor the asteroid to see how its orbit and rotation have been affected.

Harris says, “When we do actually find a hazardous asteroid, you could imagine a Don Quijote-type mission as a precursor to a mitigation mission. It will tell us how the target responds to an impact and will help us to develop a much more effective mitigation mission.”

On 9 July, the findings were presented to the scientific and industrial community. Representatives of other national space agencies were also invited in the hope that they will be interested in developing a joint mission, based around this concept.

Andrés Galvez, ESA’s Advanced Concepts Team and technical officer for the NEOMAP report says, “This report gives us a solid foundation to define programmatic priorities and an implementation strategy, in which I also hope we are joined by international partners”.

With international cooperation, a mission could be launched as early as 2010-2015.

Roger Walker | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>