Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials On The Nanoscale May Sometimes Be Subject To The Same Physical Rules As Their Macro-World Counterparts

13.07.2004


A nanospring hangs from the tip of an atomic force microscope. The spring measures 20 nanometers wide and about 1 micrometer in length.


Researchers at the Georgia Institute of Technology and NASA suggest that materials on the nanoscale may sometimes be subject to the same physical rules as their macro-world counterparts. The findings provide an exception to the conventional scientific notion that objects small enough to be measured in nanometers (one-billionth of a meter) behave according to different rules than larger objects.

A team led by Lawrence Bottomley in Georgia Tech’s School of Chemistry and Biochemistry and Jonathon Colton in the School of Mechanical Engineering found that the mechanical response of a multi-walled carbon nanospring was remarkably similar to the rules that govern the mechanical properties of springs on the macro scale. The results are published in the American Chemical Society journal Nano Letters, Volume 4, Number 6.

“Small may not necessarily be different when it comes to the mechanical properties of springs,” said Bottomley. The findings suggest there may be other nano materials that behave in ways similar to their macroscale counterparts.



The results were surprising because they ran counter to the common wisdom in the literature said Colton.

“You’ve got to study each case carefully, don’t just assume it’s different,” Bottomley added.

The team used an atomic force microscope to compress a multi-walled carbon nanospring attached to the cantilever probe tip. By simultaneously monitoring cantilever deflection, oscillation amplitude and resonance of the cantilever, the group found the nanospring compressed and buckled in the same ways a macroscale spring would.

In this one application we modeled the performance of a nanospring using the equations that are used to describe two macroscale springs in series. The agreement of data with the theory is remarkably good, said Bottomley.

In the future, the team plans further tests on multiwalled carbon nanosprings to correlate the number of walls, number of coils, and helical pitch with mechanical performance.

Other members of the research team included Mark Poggi, Jeffrey Boyles and Andrew McFarland from Georgia Tech; Cattien Nguyen from the ELORET Corporation and Ramsey Stevens and Peter Lillehei from NASA.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>