Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glimpse at Early Universe Reveals Surprisingly Mature Galaxies

08.07.2004


Observations challenge standing view of how and when galaxies formed



A rare glimpse back in time into the universe’s early evolution has revealed something startling: mature, fully formed galaxies where scientists expected to discover little more than infants.

“Up until now, we assumed that galaxies were just beginning to form between 8 and 11 billion years ago, but what we found suggests that that is not the case,” said Karl Glazebrook, associate professor of physics and astronomy in the Krieger School of Arts and Sciences at The Johns Hopkins University in Baltimore and co-principal author of a paper in the July 8 issue of “Nature.” “It seems that an unexpectedly large fraction of stars in big galaxies were already in place early in the universe’s formation, and that challenges what we’ve believed. We thought massive galaxies came much later.”


Using the Frederick C. Gillett Gemini North Telescope in Mauna Kea, Hawaii, Glazebrook and a multinational team of researchers called the Gemini Deep Deep Survey (GDDS) employed a special technique called the “Nod and Shuffle” to peer into what had traditionally been a cosmological blind spot. Called “the Redshift Desert,” this era – 8 billion to 11 billion years ago, when the universe was only 3 billion to 6 billion years old – has remained relatively unexplored until now, mainly because of the challenges inherent in collecting data from the faintest galactic light ever to be dissected into the rainbow of colors called a spectrum. In all, the team collected and analyzed spectra from 300 galaxies, making it the most complete sample ever taken from the Redshift Desert.

“This was the most comprehensive survey ever done covering the bulk of the galaxies that represent conditions in the early universe,” Glazebrook said. “We expected to find basically zero massive galaxies beyond about 9 billion years ago, because theoretical models predict that massive galaxies form last. Instead, we found highly developed galaxies that just shouldn’t have been there, but are.”

These findings challenge the dominant theory of galactic evolution, which posits that at this early stage, galaxies should have formed from the bottom up, with small pieces crashing together to build small and then ever larger galaxies. Called the “hierarchical model,” this scenario predicts that normal-to-large galaxies such as those studied by GDDS would not yet exist.

“There are obviously some aspects of the early lives of galaxies that we don’t yet completely understand, Glazebrook said. “We do find fewer massive galaxies in the past, but there are still more than we expected. This result is giving us a big clue as to how stars form from invisible gas in the hierarchical model, which is something not well understood under current theories. Some new ingredient is required to make more stars form earlier in the big galaxies. But what that ingredient is, we don’t yet know.”

The GDDS team, which included “Nature” paper co-authors Roberto Abraham from the University of Toronto, Patrick McCarthy from the Observatories of the Carnegie Institution of Washington and David Crampton of the National Research Council of Canada’s Herzberg Institute of Astrophysics, was supported by a grant from the Packard Foundation and by institutional support from the National Science Foundation, Canada’s National Research Council, the Natural Sciences and Engineering Research Council of Canada and the United Kingdom’s Particle Physics and Research Council, among others.

| newswise
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>