Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glimpse at Early Universe Reveals Surprisingly Mature Galaxies

08.07.2004


Observations challenge standing view of how and when galaxies formed



A rare glimpse back in time into the universe’s early evolution has revealed something startling: mature, fully formed galaxies where scientists expected to discover little more than infants.

“Up until now, we assumed that galaxies were just beginning to form between 8 and 11 billion years ago, but what we found suggests that that is not the case,” said Karl Glazebrook, associate professor of physics and astronomy in the Krieger School of Arts and Sciences at The Johns Hopkins University in Baltimore and co-principal author of a paper in the July 8 issue of “Nature.” “It seems that an unexpectedly large fraction of stars in big galaxies were already in place early in the universe’s formation, and that challenges what we’ve believed. We thought massive galaxies came much later.”


Using the Frederick C. Gillett Gemini North Telescope in Mauna Kea, Hawaii, Glazebrook and a multinational team of researchers called the Gemini Deep Deep Survey (GDDS) employed a special technique called the “Nod and Shuffle” to peer into what had traditionally been a cosmological blind spot. Called “the Redshift Desert,” this era – 8 billion to 11 billion years ago, when the universe was only 3 billion to 6 billion years old – has remained relatively unexplored until now, mainly because of the challenges inherent in collecting data from the faintest galactic light ever to be dissected into the rainbow of colors called a spectrum. In all, the team collected and analyzed spectra from 300 galaxies, making it the most complete sample ever taken from the Redshift Desert.

“This was the most comprehensive survey ever done covering the bulk of the galaxies that represent conditions in the early universe,” Glazebrook said. “We expected to find basically zero massive galaxies beyond about 9 billion years ago, because theoretical models predict that massive galaxies form last. Instead, we found highly developed galaxies that just shouldn’t have been there, but are.”

These findings challenge the dominant theory of galactic evolution, which posits that at this early stage, galaxies should have formed from the bottom up, with small pieces crashing together to build small and then ever larger galaxies. Called the “hierarchical model,” this scenario predicts that normal-to-large galaxies such as those studied by GDDS would not yet exist.

“There are obviously some aspects of the early lives of galaxies that we don’t yet completely understand, Glazebrook said. “We do find fewer massive galaxies in the past, but there are still more than we expected. This result is giving us a big clue as to how stars form from invisible gas in the hierarchical model, which is something not well understood under current theories. Some new ingredient is required to make more stars form earlier in the big galaxies. But what that ingredient is, we don’t yet know.”

The GDDS team, which included “Nature” paper co-authors Roberto Abraham from the University of Toronto, Patrick McCarthy from the Observatories of the Carnegie Institution of Washington and David Crampton of the National Research Council of Canada’s Herzberg Institute of Astrophysics, was supported by a grant from the Packard Foundation and by institutional support from the National Science Foundation, Canada’s National Research Council, the Natural Sciences and Engineering Research Council of Canada and the United Kingdom’s Particle Physics and Research Council, among others.

| newswise
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>